Seed oils are a vital component of the American food system, offering a nutritious, affordable, and versatile source of dietary fats. Their unique fatty acid profiles make them well-suited for a wide range of culinary uses, from home cooking to large-scale food production. This fact sheet provides a science-based overview of the role seed oils play in a safe, healthy diet. 

  • Seed oils provide essential fatty acids that are important for health and for normal function of the body (1,2). 
  • Polyunsaturated fatty acids from seed oils lower “bad” (LDL) cholesterol in the blood (3,4). 
  • Polyunsaturated fatty acids from seed oils decrease the likelihood of a person getting cardiovascular disease (5-11, 35) and diabetes (12-36). 
  • Polyunsaturated fatty acids from seed oils have not been shown to promote inflammation in human clinical trials (37,38). 
  • Polyunsaturated fatty acids from seed oils improve body composition and metabolic health (39). 
  • The utility of the dietary omega-6 to omega-3 ratio has been debated and there is no consensus on its usefulness (40-41). 
  • All oils spoil when they become rancid or are thermally abused (e.g., heated to temperatures exceeding its smoke point) (42-50). 
  • Seed oils contain high amounts of tocopherols that provide natural protection against spoilage by delaying the onset of rancidity (42,45,49,50). 
  • Oils should be carefully heated to prevent spoilage by thermal degradation (42,49,51). 
  • Spoiled oils can contain harmful components so they should be discarded and not consumed as with any spoiled food (52-60). 

References  

  1. Beneficial effects of linoleic acid on cardiometabolic health: an update. Jackson KH, Harris WS, Belury MA, Kris-Etherton PM, Calder PC. Lipids Health Dis. 2024 Sep 12;23(1):296.
  2. Perspective on the health effects of unsaturated fatty acids and commonly consumed plant oils high in unsaturated fat. Petersen KS, Maki KC, Calder PC, Belury MA, Messina M, Kirkpatrick CF, Harris WS. Br J Nutr. 2024 Oct 28;132(8):1039-1050.
  3. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Mensink RP, Zock PL, Kester AD, Katan MB. Am J Clin Nutr. 2003 May;77(5):1146-55.
  4. Impact of Replacement of Individual Dietary SFAs on Circulating Lipids and Other Biomarkers of Cardiometabolic Health: A Systematic Review and Meta-Analysis of Randomized Controlled Trials in Humans. Sellem L, Flourakis M, Jackson KG, Joris PJ, Lumley J, Lohner S, Mensink RP, Soedamah-Muthu SS, Lovegrove JA. Adv Nutr. 2022 Aug 1;13(4):1200-1225.
  5. Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: a systematic review and meta-analysis of randomized controlled trials. Mozaffarian D, Micha R, Wallace S. PLoS Med. 2010 Mar 23;7(3):e1000252.
  6. Circulating and dietary omega-3 and omega-6 polyunsaturated fatty acids and incidence of CVD in the Multi-Ethnic Study of Atherosclerosis. de Oliveira Otto MC, Wu JH, Baylin A, Vaidya D, Rich SS, Tsai MY, Jacobs DR Jr, Mozaffarian D. J Am Heart Assoc. 2013 Dec 18;2(6):e000506.
  7. Circulating omega-6 polyunsaturated fatty acids and total and cause-specific mortality: the Cardiovascular Health Study. Wu JH, Lemaitre RN, King IB, Song X, Psaty BM, Siscovick DS, Mozaffarian D. Circulation. 2014 Oct 7;130(15):1245-53.
  8. Dietary linoleic acid and risk of coronary heart disease: a systematic review and meta-analysis of prospective cohort studies. Farvid MS, Ding M, Pan A, Sun Q, Chiuve SE, Steffen LM, Willett WC, Hu FB. Circulation. 2014 Oct 28;130(18):1568-78.
  9. Biomarkers of Dietary Omega-6 Fatty Acids and Incident Cardiovascular Disease and Mortality. Marklund M, Wu JHY, Imamura F, Del Gobbo LC, Fretts A, de Goede J, Shi P, Tintle N, Wennberg M, Aslibekyan S, Chen TA, de Oliveira Otto MC, Hirakawa Y, Eriksen HH, Kröger J, Laguzzi F, Lankinen M, Murphy RA, Prem K, Samieri C, Virtanen J, Wood AC, Wong K, Yang WS, Zhou X, Baylin A, Boer JMA, Brouwer IA, Campos H, Chaves PHM, Chien KL, de Faire U, Djoussé L, Eiriksdottir G, El-Abbadi N, Forouhi NG, Michael Gaziano J, Geleijnse JM, Gigante B, Giles G, Guallar E, Gudnason V, Harris T, Harris WS, Helmer C, Hellenius ML, Hodge A, Hu FB, Jacques PF, Jansson JH, Kalsbeek A, Khaw KT, Koh WP, Laakso M, Leander K, Lin HJ, Lind L, Luben R, Luo J, McKnight B, Mursu J, Ninomiya T, Overvad K, Psaty BM, Rimm E, Schulze MB, Siscovick D, Skjelbo Nielsen M, Smith AV, Steffen BT, Steffen L, Sun Q, Sundström J, Tsai MY, Tunstall-Pedoe H, Uusitupa MIJ, van Dam RM, Veenstra J, Monique Verschuren WM, Wareham N, Willett W, Woodward M, Yuan JM, Micha R, Lemaitre RN, Mozaffarian D, Risérus U; Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Fatty Acids and Outcomes Research Consortium (FORCE). Circulation. 2019 May 21;139(21):2422-2436.
  10. Reduction in saturated fat intake for cardiovascular disease. Hooper L, Martin N, Jimoh OF, Kirk C, Foster E, Abdelhamid AS. Cochrane Database Syst Rev. 2020 Aug 21;8(8):CD011737.
  11. Dietary intake and biomarkers of linoleic acid and mortality: systematic review and meta-analysis of prospective cohort studies. Li J, Guasch-Ferré M, Li Y, Hu FB. Am J Clin Nutr. 2020;112(1):150–167.
  12. Dietary fat intake and risk of type 2 diabetes in women. Salmerón J, Hu FB, Manson JE, Stampfer MJ, Colditz GA, Rimm EB, Willett WC. Am J Clin Nutr. 2001;73:1019-26.
  13. Dietary fat and incidence of type 2 diabetes in older Iowa women. Meyer KA, Kushi LH, Jacobs DR Jr, Folsom AR. Diabetes Care. 2001;24:1528-35.
  14. Dietary fat and meat intake in relation to risk of type 2 diabetes in men. van Dam RM, Willett WC, Rimm EB, Stampfer MJ, Hu FB. Diabetes Care. 2002;25:417-24.
  15. Associations Between Linoleic Acid Intake and Incident Type 2 Diabetes Among U.S. Men and Women. Zong G, Liu G, Willett WC, Wanders AJ, Alssema M, Zock PL, Hu FB, Sun Q. Diabetes Care. 2019;42:1406-1413.
  16. Dietary fat and the risk of clinical type 2 diabetes: the European prospective investigation of Cancer-Norfolk study. Harding AH, Day NE, Khaw KT, Bingham S, Luben R, Welsh A, Wareham NJ. Am J Epidemiol. 2004;159:73-8.
  17. Fatty acids measured in plasma and erythrocyte-membrane phospholipids and derived by food-frequency questionnaire and the risk of new-onset type 2 diabetes: a pilot study in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk cohort. Patel PS, Sharp SJ, Jansen E, Luben RN, Khaw KT, Wareham NJ, Forouhi NG. Am J Clin Nutr. 2010;92:1214-22.
  18. Insulin resistance, inflammation, and serum fatty acid composition. Fernández-Real JM, Broch M, Vendrell J, Ricart W. Diabetes Care. 2003;26:1362-8.
  19. Low Percentage of Vegetable Fat in Red Blood Cells Is Associated with Worse Glucose Metabolism and Incidence of Type 2 Diabetes. Chiva-Blanch G, Giró O, Cofán M, Calle-Pascual AL, Delgado E, Gomis R, Jiménez A, Franch-Nadal J, Rojo Martínez G, Ortega E. Nutrients. 2022;14:1368.
  20. Red Blood Cell Fatty Acids and Incident Diabetes Mellitus in the Women’s Health Initiative Memory Study. Harris WS, Luo J, Pottala JV, Margolis KL, Espeland MA, Robinson JG. PLoS One. 2016;11:e0147894.
  21. The risk to develop NIDDM is related to the fatty acid composition of the serum cholesterol esters. Vessby B, Aro A, Skarfors E, Berglund L, Salminen I, Lithell H. Diabetes. 1994;43:1353-7.
  22. Serum fatty acid composition predicts development of impaired fasting glycaemia and diabetes in middle-aged men. Laaksonen DE, Lakka TA, Lakka HM, Nyyssönen K, Rissanen T, Niskanen LK, Salonen JT. Diabet Med. 2002;19:456-64.
  23. Associations of Serum Fatty Acid Proportions with Obesity, Insulin Resistance, Blood Pressure, and Fatty Liver: The Cardiovascular Risk in Young Finns Study. Kaikkonen JE, Jula A, Viikari JSA, Juonala M, Hutri-Kähönen N, Kähönen M, Lehtimäki T, Raitakari OT. J Nutr. 2021;151:970-978.
  24. Plasma fatty acid composition and incidence of diabetes in middle-aged adults: the Atherosclerosis Risk in Communities (ARIC) Study. Wang L, Folsom AR, Zheng ZJ, Pankow JS, Eckfeldt JH; ARIC Study Investigators. Am J Clin Nutr. 2003;78:91-8.
  25. Glycerol and fatty acids in serum predict the development of hyperglycemia and type 2 diabetes in Finnish men. Mahendran Y, Cederberg H, Vangipurapu J, Kangas AJ, Soininen P, Kuusisto J, Uusitupa M, Ala-Korpela M, Laakso M. Diabetes Care. 2013;36:3732-8.
  26. Association of erythrocyte membrane fatty acids with changes in glycemia and risk of type 2 diabetes. Mahendran Y, Ågren J, Uusitupa M, Cederberg H, Vangipurapu J, Stančáková A, Schwab U, Kuusisto J, Laakso M. Am J Clin Nutr. 2014;99:79-85.
  27. Plasma fatty acids as predictors of glycaemia and type 2 diabetes. Lankinen MA, Stančáková A, Uusitupa M, Ågren J, Pihlajamäki J, Kuusisto J, Schwab U, Laakso M. Diabetologia. 2015;58:2533-44.
  28. Serum n-6 polyunsaturated fatty acids, delta5- and delta6-desaturase activities, and risk of incident type 2 diabetes in men: the Kuopio Ischaemic Heart Disease Risk Factor Study. Yary T, Voutilainen S, Tuomainen TP, Ruusunen A, Nurmi T, Virtanen JK. Am J Clin Nutr. 2016;103:1337-43.
  29. Fatty acid profile of the erythrocyte membrane preceding development of Type 2 diabetes mellitus. Krachler B, Norberg M, Eriksson JW, Hallmans G, Johansson I, Vessby B, Weinehall L, Lindahl B. Nutr Metab Cardiovasc Dis. 2008;18:503-10.
  30. Erythrocyte membrane phospholipid fatty acids, desaturase activity, and dietary fatty acids in relation to risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Kröger J, Zietemann V, Enzenbach C, Weikert C, Jansen EH, Döring F, Joost HG, Boeing H, Schulze MB. Am J Clin Nutr. 2011;93:127-42.
  31. Plasma Lipidomic n-6 Polyunsaturated Fatty Acids and Type 2 Diabetes Risk in the EPIC-Potsdam Prospective Cohort Study. Prada M, Eichelmann F, Wittenbecher C, Kuxhaus O, Schulze MB. Diabetes Care. 2023;46:836-844.
  32. Association of Plasma Phospholipid n-3 and n-6 Polyunsaturated Fatty Acids with Type 2 Diabetes: The EPIC-InterAct Case-Cohort Study. Forouhi NG, Imamura F, Sharp SJ, Koulman A, Schulze MB, Zheng J, Ye Z, Sluijs I, Guevara M, Huerta JM, Kröger J, Wang LY, Summerhill K, Griffin JL, Feskens EJ, Affret A, Amiano P, Boeing H, Dow C, Fagherazzi G, Franks PW, Gonzalez C, Kaaks R, Key TJ, Khaw KT, Kühn T, Mortensen LM, Nilsson PM, Overvad K, Pala V, Palli D, Panico S, Quirós JR, Rodriguez-Barranco M, Rolandsson O, Sacerdote C, Scalbert A, Slimani N, Spijkerman AM, Tjonneland A, Tormo MJ, Tumino R, van der A DL, van der Schouw YT, Langenberg C, Riboli E, Wareham NJ. PLoS Med. 2016 Jul 19;13(7):e1002094.
  33. Omega-6 fatty acid biomarkers and incident type 2 diabetes: pooled analysis of individual-level data for 39 740 adults from 20 prospective cohort studies. Wu JHY, Marklund M, Imamura F, Tintle N, Ardisson Korat AV, de Goede J, et al. Lancet Diabetes Endocrinol. 2017 Dec;5(12):965-974.
  34. Dietary Intake of Linoleic Acid, Its Concentrations, and the Risk of Type 2 Diabetes: A Systematic Review and Dose-Response Meta-analysis of Prospective Cohort Studies. Mousavi SM, Jalilpiran Y, Karimi E, Aune D, Larijani B, Mozaffarian D, Willett WC, Esmaillzadeh A. Diabetes Care. 2021 Sep;44(9):2173-218.
  35. Effect of the amount and type of dietary fat on cardiometabolic risk factors and risk of developing type 2 diabetes, cardiovascular diseases, and cancer: a systematic review. Schwab U, Lauritzen L, Tholstrup T, Haldorssoni T, Riserus U, Uusitupa M, Becker W. Food Nutr Res. 2014 Jul 10;58.
  36. Dietary Intake of Linoleic Acid, Its Concentrations, and the Risk of Type 2 Diabetes: A Systematic Review and Dose-Response Meta-analysis of Prospective Cohort Studies. Mousavi SM, Jalilpiran Y, Karimi E, Aune D, Larijani B, Mozaffarian D, Willett WC, Esmaillzadeh A. Diabetes Care. 2021;44:2173-218.
  37. Effect of dietary linoleic acid on markers of inflammation in healthy persons: A systematic review of randomized controlled trials. Johnson GH, Fritsche K. J Acad Nutr Diet. 2012;112(7):1029–1041.
  38. Omega-6 fatty acids and inflammation. Innes JK, Calder PC. Prostaglandins Leukot Essent Fatty Acids. 2018;132:41-48.
  39. Polyunsaturated fatty acids as modulators of fat mass and lean mass in human body composition regulation and cardiometabolic health. Monnard CR, Dulloo AG. Obes Rev. 2021;22(S2):e13197.
  40. The omega-6/omega-3 fatty acid ratio and cardiovascular disease risk: uses and abuses. Harris WS. Curr Atheroscler Rep. 2006;8(6):453–459.
  41. UK Food Standards Agency Workshop Report: the effects of the dietary n-6:n-3 fatty acid ratio on cardiovascular health. Stanley JC, Elsom RL, Calder PC, Griffin BA, Harris WS, Jebb SA, Lovegrove JA, Moore CS, Riemersma RA, Sanders TA. Br J Nutr. 2007 Dec;98(6):1305-10.
  42. Lipid Oxidation. Frankel EN. Oily Press, Dundee Scotland. 2005.
  43. Lipid oxidation in oil-in-water emulsions: Impact of molecular environment on chemical reactions in heterogeneous food systems. McClements DJ, Decker EA. J Food Sci. 2000;65(8):1270-1282.
  44. Lipid Oxidation: New Perspectives on an Old Reaction. Schaich KM. In: Bailey AE, Shahidi F, eds. Bailey’s Industrial Oil & Fat Products. Hoboken, NJ: Wiley; 2005.
  45. Why does lipid oxidation in foods continue to be such a challenge? Decker EA, Bayram I. INFORM. 2021 May. 
  46. Lipids. McClements DJ, Decker EA. In: Damodaran S, Parkin K, Fennema O, eds. Fennema’s Food Chemistry. 5th ed. Boca Raton, FL: CRC Press; 2017.
  47. Metals and lipid oxidation. Contemporary issues. Schaich KM. Lipids. 1992;27:209–218.
  48. Minor Components in Food Oils: A Critical Review of their Roles on Lipid Oxidation Chemistry in Bulk Oils and Emulsions. Chen B, McClements DJ, Decker EA. Crit Rev Food Sci Nutr. 2011;51:901-916.
  49. Bailey’s Industrial Oil and Fat Products. Bailey AE. Volume 7. New York: Wiley; 2020.
  50. Lipid Oxidation, Challenges in Food Systems. Logan A, Nienaber U, Pan X, eds. AOCS Press; 2013.
  51. Quality and safety of frying oils used in restaurants. Sebastian A, Ghazani M, Marangoni AG. Food Res Int. 2014;64:420-423.
  52. Underlying mechanisms of synergistic antioxidant interactions during lipid oxidation. Bayram I, Decker EA. Trends Food Sci Technol. 2023;133:219-230.
  53. Lipid oxidation in foods and its implications on proteins. Lianxin G, Kunlun L, Huiyan Z. Front Nutr. 2023.
  54. Biological Implications of Lipid Oxidation Products. Vieira S, et al. J Am Oil Chem Soc. 2017;94(3):339-351.
  55. Are lipid oxidation products consumed in foods toxic? If so, where? Schaich KM. J Am Oil Chem Soc. 2020;97:76-76.
  56. The lipid peroxidation product EKODE exacerbates colonic inflammation and colon tumorigenesis. Lei L, Yang J. Zhang J, Zhang G. Redox Biol. 2021;42:101880. 
  57. Intraperitoneal injection of 4-hydroxynonenal (4-HNE), a lipid peroxidation product, exacerbates colonic inflammation through activation of Toll-like receptor 4 signaling. Wang YX, Wang W, Yang H, Shao D, Zhao X, Zhang G. Free Radic Biol Med. 2019;131:237-242.
  58. Lipidomic Analysis of Oxidized Fatty Acids in Plant and Algae Oils. Richardson CE, Hennebelle M, Otoki Y, Zamora D, Yang J, Hammock BD, Taha AY. J Agric Food Chem. 2017;65(9):1941-1951.
  59. Techniques for the Analysis of Minor Lipid Oxidation Products Derived from Triacylglycerols: Epoxides, Alcohols, and Ketones. Xia W, Budge SM. Compr Rev Food Sci Food Saf. 2017;16(4):735-756.
  60. Quantitation of Hydroperoxy-, Keto- and Hydroxy-Dienes During Oxidation of FAMEs from High-Linoleic and High-Oleic Sunflower Oils. Morales Barroso A, Dobarganes MC, Márquez-Ruiz G, Velasco J.  J Am Oil Chem Soc. 2010;87(11):1271-1279.

 

About AOCS:
Founded in 1909, the American Oil Chemists’ Society (AOCS) advances the science and technology of oils, fats, proteins, surfactants, and related materials, enriching the lives of people everywhere. Through analytical methods, publications, and professional development, AOCS serves as a global leader in the field of lipid science.

AOCS Fact Sheet on Seed Oils

Downloadable PDF

 

(†) The scientific references cited in this fact sheet are not intended to be comprehensive. Rather, they are representative of the broader body of evidence and illustrate the overwhelming scientific support for the statements presented

 

 

Post Type

  • Press Releases

Topic

  • Analytical
  • Edible Oil Processing
  • Health and Nutrition
  • Human Nutrition
  • Lipid Oxidation and Quality
  • Nutrition
  • Processing

Share