Searching and finding unusual fatty acids and compounds of the unsaponifiable matter

Universität Hohenheim Institut für Lebensmittelchemie D-70593 Stuttgart

AK Vetter

polyhalogenated compounds

countercurrent chromatography

halogenated natural producs

halogenated flame retardants

methylbranched fatty acids

lipid analysis

furan fatty acids

unsaponifiable matter

food authenticy

enantiomer separations stable isotope mass spectrometry (IRMS) standard compounds

Gas chromatograms of fatty acids (as methyl esters) in food samples

anteiso-fatty acids acids

• methyl substitutent at (*n-2*) carbon \Rightarrow anteiso-fatty acid

- typical chain length: C₁₄ and C₁₆, odd carbon number (due to methyl group)
- usually found in ruminants and fish (barely in plants)
- usually occurring together with iso-fatty acids (methyl-branch on second last carbon)

13-methyl tetradecanoic acid (i15:0)

Bacterial lipids

anteiso- and iso-fatty acids dominate (in gram-positive bacteria)
 ⇒ up to 80% contribution to the total fatty acids

- occurrence of anteiso-fatty acids in food is mostly linked with the presence of bacteria
 - \Rightarrow in gnotobiologic (germ-free) rats only present at traces [1]

[1] Y. Demarne, E. Sacquet, M. J. Lecourtier, J. Flanzy. Am. J. Clin. Nutr. 32 (1979) 2027-2032

Stable isotope analysis: GC-IRMS method

- eluate from the GC column led to combustion unit
- organic carbon is transferred into CO₂
- exact determination of the ¹³C/¹²C ratio is difficult
 - \Rightarrow instead, measurement relative to reference standard

$$\delta^{13}C[\%_{o}] = \frac{[^{13}C/^{12}C]_{sample} - [^{13}C/^{12}C]_{standard}}{[^{13}C/^{12}C]_{standard}} \times 1000$$

• typical δ^{13} C values in the range -10 to -40‰

<u>Ref.</u>: W. G. Mook WG (ed) (2000) Environmental isotopes in the hydrological cycle, principles and applications, Vol I: Introduction: theory, methods, review. UNESCO/IAEA, Vienna/Paris

δ^{13} C values [‰] of fatty acids in suet

fatty acid*	δ^{13} C value [‰]
12:0	-26.6
14:0	-27.2
i15:0	-36.7
a15:0	-35.9
15:0	-30.5
i16:0	-37.6
16:0	-27.1
i17:0	-36.2
a17:0	-35.5

δ^{13} C values verify:

methyl-branched fatty acids

 are depleted in ¹³C
 compared to
 straight-chain fatty acids
 ⇒ different sources!

* measured as methyl ester

Ref.: W. Vetter, S. Gaul, S. Thurnhofer, K. Mayer, Anal. Bioanal. Chem. 389 (2007) 597-604

Properties of methylbranched fatty acids

- inertness towards oxidation
- low melting point
- changing physiological properties of lipids
 ⇒ increase of the membrane fluidity
- positive effect on the penetration of other compounds into the skin

Differential scanning calorimetry (DSC): DSC thermograms of lipids

1,2-dimyristoyl-*sn*-glycero-3-phosphatidylcholine (DMPC)

Ref.: F. Lindström, S. Thurnhofer, W. Vetter, G. Gröbner, Phys. Chem. Chem. Phys. 8 (2006) 4792-4797

A thought during a student lecture

usually

 amino acids – building blocks of proteins – are chiral (typically L-form)

 sugars – building blocks of carbohydrates – are chiral (typically D-form)

fatty acids – building blocks of lipids – are non-chiral
 ⇒ one notable exception: anteiso-fatty acids

Chirality of anteiso-fatty acids

- 1950ies: one-time investigation of suet and shark liver oils [1,2]
 - ⇒ ~ 10 kg fat/oil converted into methyl esters
 - \Rightarrow fractionation via distillation
 - \Rightarrow repeated crystallization
 - \Rightarrow x-ray analysis, optical rotation

<u>result:</u>

• all samples exclusively featured the (+)-enantiomer

<u>Ref.</u>: [1] R. P. Hansen, F. B. Shorland, N. J. Cooke, *Biochem. J.* 52 (1952) 203-207 [2] I. M. Morice, F. B. Shorland, *Biochem. J.* 64 (1956) 461-464

GC enantiomer separation of anteiso-fatty acids

- not reported when we started
- only of α-, β- and γ-methylsubstituted acids resolved [1][2]
- the more remote the methyl group from the head group, the more difficult the enantiomer separation is [1][2]

[1] V. Karl, J. Gutser, A. Dietrich, B. Maas, A. Mosandl, *Chirality* 6 (1994) 427-434
[2] R. Stritzel, B. Dobner, F. Bringezu, P. Nuhn, J. *High Res. Chrom.* 19 (1996) 121-123

Small problems had to be solved...

Fatty acid analysis

- important routine task in food science (and life sciences)
- classic method using GC/FID after formation of fatty acid methyl esters (FAME)
 - \Rightarrow peak abundance correlates with amount
 - \Rightarrow determination of relative contributions ("100% method")

disadvantages of GC/FID

- low selectivity
- co-elutions may be overlooked
- problems with low abundant fatty acids

GC: gas chromatography FID: flame ionisation detector

Coelution of monoenoic and anteiso-fatty acids

GC/MS chromatogram of a milk fat sample

(GC column: 50 m x 0.25 mm i.d. x 0.2 µm 100% cyanopropyl polysiloxane)

Why GC/MS in SIM mode?

(selected ion monitoring (SIM))

more sensitive and selective than full scan

GC column: 50 m x 0.25 mm i.d. x 0.2 µm 100% cyanopropyl polysiloxane

Ref.: S. Thurnhofer, W. Vetter, J. Agric. Food Chem. 53 (2005) 8896-8903

Determination of fatty acid methyl esters by GC/MS-SIM

<u>Ref</u>:. W. Vetter, S. Thurnhofer, , *Lipid Technol*. 19 (2007) 184-186

Quantitative determination of individual fatty acids

 quantification requires use of internal standards (IS) not present in the sample

(1) IS for sample cleanup

(addition before/after the extraction)

(2) syringe standard

(addition to GC/MS solution)

Ref:. S. Thurnhofer, K. Lehnert, W. Vetter, Eur. Food Res. Technol. 226 (2008) 975-983

House method

Ref:. S. Thurnhofer, K. Lehnert, W. Vetter, Eur. Food Res. Technol. 226 (2008) 975-983

Microwave-assisted extraction (focused-open vessel; FOV-MAE)

Concentrations [g/100 g fat] of methyl-branched fatty acids in food

FAME (n = 3)	mozzarella (cow) [g/100 g]	feta (cow) [g/100 g]	feta cheese [g/100 g]	human milk [g/100 g]
i14:0	0.08 ± 0.00	0.08 ± 0.00	0.08 ± 0.00	0.02 ± 0.00
i15:0	0.20 ± 0.01	0.29 ± 0.01	0.21 ± 0.01	0.06 ± 0.00
a15:0	0.30 ± 0.01	0.38 ± 0.01	0.34 ± 0.03	0.08 ± 0.00
i16:0	0.12 ± 0.00	0.09 ± 0.01	0.07 ± 0.01	0.03 ± 0.00
i17:0	0.47 ± 0.01	0.56 ± 0.02	0.37 ± 0.02	0.11 ± 0.02
a17:0	0.39 ± 0.01	0.42 ± 0.02	0.37 ± 0.01	0.14 ± 0.00

 only these fatty acids were quantified using the corresponding ethyl esters as IS

Ref:. S. Thurnhofer, K. Lehnert, W. Vetter, Eur. Food Res. Technol. 226 (2008) 975-983

Birth goo (Vernix caseosa)

• detection of ~60 methyl-branched fatty acids (although germ-free)

Direct GC enantiomer separation of anteiso-fatty acids

application of modified cyclodextrins

α-cyclodextrin (6 glucose units) β-cyclodextrin (7 glucose units) γ-cyclodextrin(8 glucose units)

• *O*-derivatisation at C-2, C-3 and C-6 provides a range of modified cyclodextrins suitable as chiral stationary GC phases

6-*O-tert*.-butyldimethylsilyl-2,3-di-*O*methyl-β-cyclodextrin (β-TBDM)

- tests of >20 chiral stationary phases only partly successful with β-TBDM
 - ⇒ improvement of the initial phase (collaboration with G. Hottinger, BGB-Analytik)

 $10\% \beta$ -TBDM thin film

- lowers elutions temperature
- resolution decreases

50% β-TBDM standard film

- better interaction
- better resolution

<u>Ref</u>: S. Thurnhofer, G. Hottinger, W. Vetter, *Anal. Chem.* 79 (2007) 4696-4701

Enantioselective determination of a17:0 on β -TBDM

Ref: S. Thurnhofer, G. Hottinger, W. Vetter, Anal. Chem. 79 (2007) 4696-4701

Sample preparing for enantiomer separation: (1) urea complexation (2) silver ion chromatography

Ref: S. Thurnhofer, G. Hottinger, W. Vetter, Anal. Chem. 79 (2007) 4696-4701

Results: Chirality of anteiso-fatty acids

- anteiso-fatty acids are predominantly *S*-configurated in milk fat and fish oil (S. Thurnhofer, G. Hottinger, W. Vetter, *Anal. Chem.* 79 (2007) 4696-4701)
- yet, up to 10% *R*-anteiso-fatty acids detected in milk fat and fish
- higher share of *R*-anteiso fatty acids in polar lipids
 (S. Hauff, G. Hottinger, W. Vetter, *Lipids* (2010) 357-365
- *R*-anteiso-fatty acids cannot be synthesized by the classical biosynthesis via isoleucine as the primer
 ⇒ a hitherto mostly unknown biosynthesis pathway must exist (D. Eibler, H. Abdurahman, T, Ruoff, S. Kaffarnik, H. Steingass, W. Vetter, PLOS One 12 (2017) e0170788)

Results: Chirality of anteiso-fatty acids

surprisingly, 4-alkylbranched fatty acids in milk fat and fish oil anteiso-fatty acid (principal flavor compounds of goat and sheep (4-Me-8:0 and 4-Et-8:0) were , chom. 79 (2007) 4696-4701) (S. Thurnhofer, recently shown to be *R*-enantiopure enantiopure 4-alkylbranched standards yet, up to 10^{9} sh were produced via repeated enantioselective esterification higher shar <u>Ref.:</u> D. Eibler, W. Vetter, J. Chromatogr. A 1505 (2017) 87-95 (S. Hauff, 4-alkyl: *R*-enantiomers R-anteis anteisos: Senantiomers al biosynthesis \Rightarrow a hitherto mostly unknown ast exist (D. Eibler, H. Abdurahman, T, Ruoff, S. Kanan eingass, W. Vetter, PLOS One 12 (2017) e0170788)

Two dimensional HPLC/GC chromatogram of fish oil fatty acids (as methyl esters)

- excel-programmed
 2D evaluation
 (T. Kapp, W. Vetter, J. Chromatogr. A 1216
 (2009) 8391-8397)
- similar approach as GCxGC

disadvantage

time consuming
 (~2 days per sample)

advantage

- good orthogonality
- higher amounts (post analysis possible)

<u>Ref.</u>: S. Hauff, W. Vetter, *Anal. Bioanal. Chem.* 396 (2010) 2695-2707

HPLC/GC - 2D Konturplot

PUFAs in the HPLC/GC plot of a fish oil

• many, many PUFAs

 non-aqueous RP-HPLC with three C₁₈ columns

Ref.: S. Hauff, W. Vetter, *Anal. Bioanal. Chem.* 396 (2010) 2695-2707

HPLC/GC plots of branched chain fatty acids

Valuable minor fatty acids in milk

parameter	organic milk*
phytanic acid	+
PUFA (ALA, EPA)	+
CLA	+
furan fatty acids	+

"+" higher content in organic milk than in conventional milk due to green feed

Features of furan fatty acids

- structural feature: furan moiety in the carbon chain
- substituted with one ("M") or two ("D") methyl groups

- "D"-furan fatty acids are more widespread but much less stable
 ⇒ partly absent in processed or stored samples
- excellent antioxidants (very effective protectors of PUFAs)
- degradation products responsible for off flavor of soy (among other)
- Ref.: G. Spiteller, Lipids 40 (2005) 755-771

Calculated daily intake of furan fatty acids per capita [mg], in Germany

Ref.: C. Wendlinger, W. Vetter, J. Agric. Food Chem. 62 (2014) 8740-8744

Calculated daily intake of furan fatty acids per capita [mg], in Germany

Ref.: C. Wendlinger, W. Vetter, J. Agric. Food Chem. 62 (2014) 8740-8744

Furan fatty acids

- minor fatty acids, low concentrations (typically <0.1% contribution to the total fatty acids
- <u>but:</u> widely spread in virtually all plants and animals
- discovered, studied in the 1970s (R.L. Glass, H. Schlenk, F.D. Gunstone)
- mostly forgotten, studied again ~1985-1995 (G. Spiteller, W. Grosch)
- almost forgotten since the 2000s
- no reference standards commercially available
 - \Rightarrow research only possible with house-prepared standards

Compound isolation using countercurrent chromatography (CCC)

- CCC is a well-established method in natural product isolation [1][2]
- all liquid based chromatographic method (no solid support) [3]
- allows injection and isolation of gram-amounts of analytes [3]
- barely used in field of lipid compounds [1]

<u>Ref.:</u> [1] J. B. Friesen, J. B. McAlpine, S.-N. Chen, G. F. Pauli, *J. Nat. Prod.* 78 (2015) 1765-1796 [2] I. A. Sutherland, D. Fisher, *J. Chromatogr. A* 1216 (2009) 740-753 [3] Y. Ito, *J. Chromatogr. A* 1065 (2005)145-168

Applications of countercurrent chromatography (CCC) according to SciFinder (1981-2015)

- currently >300 CCC papers/year, number is increasing
- ~3% in the field of lipid compounds

CCC instrumentation

CCC systems same setup as HPLC

instruments except the column

 \Rightarrow instead: CCC centrifuge with

multilayer coils

CCC method development

 CCC is different to liquid-liquid extractions as it aims to distribute the analyte evenly between both phases

 \Rightarrow determination of the partitioning factor

• even distribution: $K_{U/L} = 1$; acceptable range: $K_{U/L} = 0.4 - 2.5$

⇒ the goal challenge is to find a biphasic solvent system in which the analytes are ~ evenly distributed (and resolved)

 \Rightarrow see tutorial on CCC in the AOCS Lipid Library

Isolation of the valuable furan fatty acid 11D5

<u>Ref:</u> M. Müller, K. Wasmer, W. Vetter, J. Chromatogr. A (2018), in press (DOI: 10.1016/j.chroma.2018.04.069)

CCC isolation of fatty acid methyl esters

hexane/methanol/water (350/175/2) for fatty acid methyl esters (FAME)

Sample fractionation and analyte isolation via countercurrent chromatography (CCC)

1. isolation of lipid compounds for use as standards/in biotests

- examples: isolation of uncommon fatty acids
 - isolation of phytosterols, tocopherols, carotenes etc.

2. fractionation of lipids or lipid fractions by CCC

- detection of minor compounds usually "invisible" without fractionation
- examples: detection of 430 fatty acids in one butter sample
 - discovery of aromatic fatty acids in milk fat

Detailed analysis of a butter sample

- CCC #1 from FAME fraction (major fatty acids)
- CCC #2 from filtrate of urea complexation (rare trace fatty acids)
- 430 different fatty acids
- >100 PUFAs
- several rare fatty acids

<u>Ref.:</u> M. Schröder, W. Vetter, J. Am. Oil Chem. Soc. 90 (2013) 771-790

Detailed analysis of a butter sample

<u>Ref.:</u> M. Schröder, W. Vetter, J. Am. Oil Chem. Soc. 90 (2013) 771-790

Aromatic fatty acids in butter

- previously not known to occur in milk (and other food)
- potential formation from phenylalanine as the primer

<u>Ref.:</u> M. Schröder, W. Vetter, J. Am. Oil Chem. Soc. 91 (2014) 1695-1702

Cyclic fatty acids

previously known to occur in milk

 potential formation with aromatic fatty acids by hydrogenation?

M. Schröder, W. Vetter, J. Am. Oil Chem. Soc. 90 (2013) 771-790

Very nonpolar lipid compounds

Introduction of benzotrifluoride as modifier in solvent systems

• bridging solvents between the biphasic system [1]

ternary phase diagram

- well suited composition and properties:
- Hex/ACN/BTF: 10 / 6.5 / 3.5
- settling time: < 20 sec

F

Ref.: [1] M. Englert, S. Hammann, W. Vetter, J. Chromatogr. A 1388 (2015) 119-125

Isolation of carotenoids from carrot juice using hexane / acetonitrile / benzotrifluoride (BTF)

 π - π interactions

Difference between "Hex / ACN" and the "Hex / ACN / BTF" solvent system

Phase composition of solvent systems determined by GC/FID [1]

solvent system	lower	upper
hexane / ACN [1]	1.2 / <mark>98.8</mark>	99.5 / <mark>0.5</mark>
hexane / <mark>ACN</mark> / BTF [2]	29.0 / 56.7 / 14.3	76.0 / 12.5 / 11.6
	partitions stronger into lower phase	equal distribution

- >1/4th hexane partitions into lower phase
- difference in polarity decreased
- <u>Ref.</u>: [1] M. Englert, W. Vetter, *J. Chromatogr. A* 1342 (2014) 54–62 [2] M. Englert, S. Hammann, W. Vetter, *J. Chromatogr. A* 1388 (2015) 119-125

K_{U/L} of lipid compounds in the BTF system (Hex/ACN/BTF, 10:6.5:3.5)

lipid compound	log K _{ow}	HEMWAT -7 K _{U/L}	BTF K _{U/L}	
oleic acid	7.7	29	0.57	
oleic acid methyl ester	7.5	41	2.4	-
sitosterol	9.7	16	2.2	
squalane	14.6	550	62	
cholesteryl stearate	15	1260	80	
tripalmitin (PPP)	21	1490	60	

excellent for FAMEs, sterols, tocopherols

Ref.: M. Englert, W. Vetter, J. Chromatogr. A 1342 (2014) 54-62

BTF system in co-current* CCC mode

* introduced by Sutherland et al., theory by Berthod et al.

- both phases are moved
- accelerates elution of analytes with high K_{U/L}
- exponential increase
 leads to co-elution of
 analytes with high K_{U/L},
 even if ∆K_{U/L} is high

mobile phase: 4 mL/min

Ref.: S. Hammann, M. Englert, M. Müller, W. Vetter, Anal. Bioanal. Chem. 407 (2015) 9010-9027

curves: flow of "stationary" phase [mL/min]

Co-current CCC mode with the BTF system

- elution of lipid compounds spreading from log K_{OW} 3 30 within acceptable run time
- no separation of extremely nonpolar lipid compounds

Co-current CCC mode with the BTF system

bubble blot of the cocurrent CCC separation of 0.5 g rice bran oil

Ref.: S. Hammann, A. Kröpfl, W. Vetter, J. Chromatogr. A 1476 (2016) 77-87

<u>Ref.</u>: S. Hammann, M. Englert, M. Müller, W. Vetter, *Anal. Bioanal. Chem.* 407 (2015) 9010-9027

CCC isolation of vitamin E compounds

Ref.: M. Müller, S. Hammann, W. Vetter, Food Chem. 256 (2018) 327-332

Tocotrienol artefacts

- 170 non-natural vitamin
 E compounds in a palm-oil based dietary supplementary oil
- ~80 tocotrienol isomers
- tocotetra- & pentaenols
- formed during inadequate sample processing

Ref.: S. Hammann, A. Kröpfl, W. Vetter, J. Chromatogr. A 1476 (2016) 77-87

Summary

- analysis of minor lipid compounds is a fascination and varied research field
- the actual relevance of minor fatty acids may currently be underrated
- unavailability of standards frequently hampers progress in the field (no standard = no research = no knowledge)
- lipid standards can be isolated by countercurrent chromatography

- our work is a mixture of basic research and applications
- and sometimes ...

... it 's like a road movie (the journey is the goal)

Thousand thanks!

- to my former and previous ph. d. students, master and bachelor students, especially those pictured in this presentation (people first)!
- to our research partners here, there and everywhere!
- to our funders (without money, no research)!
- to Analytical Division of AOCS for honoring our research with the Herbert J. Dutton Award
- to Dr. Perluigi Delmonte, US FDA, for inviting me to the AOCS meeting in Minneapolis
- to **YOU** for your attention