2022 AOCS Annual Meeting & Expo

Edible Applications Technology Program

As of March 1, 2022. Subject to change.

Contents

General Edible Applications Technology	. 1
Fat Crystallization I—Microstructure and Polymorphic Transition	
Fat Crystallization II—Solid-state Structure	
Novel Edible Application of Food Proteins	. 3
Implications of Lipids Structuring in Food Applications I	. 3
Implications of Lipids Structuring in Food Applications II	. 4
Phase Transitions and Interfacial Phenomena in Complex Food Systems	. 4
Surfactants in Food	. 5
Interactions Between Lipids and Other Ingredients in Plant-based Products	. 5
Edible Applications Technology Poster Session	. 6

General Edible Applications Technology

EDIBLE APPLICATIONS TECHNOLOGY

Chairs: Supratim Ghosh, University of Saskatchewan, Canada; and Filip Van Bockstaele, Ghent University, Belgium

Monday, May 2, 2022 | 9:55 a.m.-Noon EDT (Atlanta, USA; UTC-4)

Tuning plant protein for improved functionality and flavor profile: From field to application. Jiajia Rao*, North Dakota State University, United States (AOCS Young Scientist Research Award Winner)

Incorporating heterogeneous stress translation in a fractal structural-mechanical theory of particle-filled colloidal networks. Andrew J. Gravelle*1, Alejandro G. Marangoni², ¹Food Science and Technology, University of California, Davis, United States; ²Food Science Department, University of Guelph, Canada

Attrition of fully hydrogenated soybean oil-coated micronutrient granules during mixing. Kiki Chan*, Gladys Olubowale, Yu-Ling Cheng, Levente Diosady, *Chemical Engineering and Applied Chemistry, University of Toronto, Canada*

The physicochemical and sensory characteristics of yoghurt fortified with encapsulated fish oil/milkfat. Mitra Nosratpour*¹, Yong Wang², Jisheng Ma³, Victoria Haritos⁴, Cordelia Selomulya², ¹Chemical Engineering, Monash University/Riverina oils and Bio energy, Australia; ²School of Chemical Engineering, UNSW, Australia; ³Monash X-Ray Platform, Monash University, Australia; ⁴Chemical Engineering, Monash University, Australia

Enhancing the quality of fried food and frying oil by adjusting the frying processing. Junmei Liang*, Fuhuan Niu, Lingling Wei, Yuanrong Jiang, Wilmar Global R&D Center, China (People's Republic)

Fat Crystallization I—Microstructure and Polymorphic Transition

EDIBLE APPLICATIONS TECHNOLOGY

Chairs: Alejandro Marangoni, University of Guelph, Canada; and Eckhard Floter, Technical University Berlin, Germany

Monday, May 2, 2022 | 1:25–3:30 p.m. EDT (Atlanta, USA; UTC-4)

The Fat Crystallization sessions feature talks concerning cupuassu fat; oil binding capacity and oil loss; examples of x-ray scattering; the filterability of oil slurries; Monte carlo simulations and comparison with x-ray scattering; TAG molecular composition; semi-liquid shortenings; alkyl chains in crystals; and isotropic liquid state of triacylglycerols.

Effects of processing conditions and emulsifiers addition of crystallization kinetics and polymorphism of cupuassu fat and its fractions. Maria Lidia Herrera*¹ (*Timothy L. Mounts Award Winner*), Maria R. Ramos¹, Victor Alonso Garcia Londoño¹, Karina Dafne Martinez¹, Maria Jose Rodríguez Batiller¹, Virginia Borroni¹, Roberto Candal²; ¹Institute of Polymer Technology and Nanotechnology, University of Buenos Aires-CONICET, Argentina; ²Institute of Research and Environmental Engineering, University of San Martin, Argentina

Relationship between oil binding capacity, oil loss, and the physical properties of an interesterified palm-based fat—influence of high-intensity ultrasound, cooling rate, and saturation level. Melissa Marsh* (*Thomas H. Smouse Memorial Fellowship Winner*), Silvana Martini, *Utah State University*, *United States*

Filterability of oil slurries as a function of particle-size distribution. Jeppe Hjorth*, *Product and Technology Development, AAK Denmark AS, Denmark*

Microstructure development in semi-liquid shortenings upon storage. Kato Rondou*, UGent, Belgium

Relating polymorphic transition and triglyceride composition. Julia Seilert*, Eckhard Flöter, Food Process Engineering, Technical University of Berlin, Germany

Fat Crystallization II—Solid-state Structure

EDIBLE APPLICATIONS TECHNOLOGY

Chairs: Alejandro Marangoni, University of Guelph, Canada; and Eckhard Floter, Technical University Berlin, Germany

Monday, May 2, 2022 | 3:55–6 p.m. EDT (Atlanta, USA; UTC-4)

The Fat Crystallization sessions feature talks concerning cupuassu fat; oil binding capacity and oil loss; examples of x-ray scattering; the filterability of oil slurries; Monte carlo simulations and comparison with x-ray scattering; TAG molecular composition; semi-liquid shortenings; alkyl chains in crystals; and isotropic liquid state of triacylglycerols.

Exploring lipid structure and phases with x-ray scattering. Scott Barton*, Xenocs Inc., United States

Isotropic liquid state of triacylglycerols: The starting point of fats and oils crystallization. Daniel Golodnizky*¹, Yulia Shmidov², Ronit Bitton³, Carlos E. S. Bernardes⁴, Maya Davidovich-Pinhas⁵, ¹Biotechnology and Food Engineering, Technion Israel Institute of Technology, Israel; ²Duke University, Israel; ³Ben-Gurion University of the Negev, Israel; ⁴Faculdade de Ciências Universidade de Lisboa, Portugal; ⁵Technion Israel Institute of Technology, Israel

USAXS and **SAXS** data: Their interpretation and the organization of alkyl chains in crystals. Fernanda Peyronel*¹, David A. Pink², Joseph Cooney³, Silvana Martini³, ¹Food Science, University of Guelph, Canada; ²Physics/Food Science, St. Francis Xavier University/University of Guelph, Canada; ³Utah State University, United States

Molecular structures of triacontane, stearic acid and behenyl lignocerate crystals: Monte Carlo simulations and comparison with x-ray scattering. David A. Pink¹, Joseph Cooney*², Fernanda Peyronel³, Silvana Martini⁴, ¹Physics/Food Science, St. Francis Xavier University/University of Guelph, Canada; ²Department of Nutrition, Dietetics and Food Sciences, Utah State University, United States; ³Food Science, University of Guelph, Canada; ⁴Utah State University, United States

Novel Edible Application of Food Proteins

EDIBLE APPLICATIONS TECHNOLOGY

Joint session with the Protein and Co-Products Division

Chairs: Pulari Krishnankutty Nair, Danone North America, USA; and Serpil Metin, Cargill Inc, USA Monday, May 2, 2022 | 3:55–6 p.m. EDT (Atlanta, USA; UTC-4)

The Novel Edible Application of Food Proteins session features the impact of cold plasma on protein structural and functional characteristics; replacing animal fat with faba bean emulsions; physiochemical properties of buckwheat albumin; and the use of pea proteins as emulsifiers in beverages.

Plant protein functionalization: Exploring cold plasma. Pam Ismail*, Department of Food Science and Nutrition, University of Minnesota, United States

Physicochemical properties of buckwheat albumin. Rio Ogawa*¹, Kazumi Ninomiya², Yusuke Yamaguchi¹, Hitoshi Kumagai², Hitomi Kumagai¹, ¹Bioresource Sciences, Nihon University, Japan; ²Food Science and Nutrition, Kyoritsu Women's University, Japan

Utilization of mildly fractionated pea proteins for the development of heat-stable beverage emulsions. Neksha Devaki*, Supratim Ghosh, *University of Saskatchewan, Canada*

Utilization of faba bean protein-stabilized structured emulsions in the replacement of animal fat in beef burgers. Breann Squires¹, Oluwafemi J. Coker², Phyllis J. Shand², Supratim Ghosh*¹, ¹University of Saskatchewan, Canada; ²Department of Food & Bioproduct Sciences, University of Saskatchewan, Canada

Panel discussion

Implications of Lipids Structuring in Food Applications I

EDIBLE APPLICATIONS TECHNOLOGY

Chairs: Nuria Acevedo, Iowa State University, USA; and Sabine Danthine, University of Liege, Belgium Tuesday, May 3, 2022 | 7:25–9:30 a.m. EDT (Atlanta, USA; UTC-4)

The Implications of Lipids Structuring in Food Applications sessions highlight fat structuring; replacing semi-solid fats; developing gels from algal oils; candelilla wax, carnauba wax and beeswax emulsions; and wax-based oleogels.

Fat structuring in confectionery applications: Evaluation of raw materials and its impact on processing and functionality. Miguel Bootello*1, Jeanine Werleman², Imro Zand², ¹Bunge Loders Croklaan, Spain; ²Bunge Loders Croklaan, Netherlands

Properties of wax-hempseed oil oleogels and their use for margarines. Hong-Sik Hwang*¹, Sanghoon Kim¹, Jill Winkler-Moser¹, Suyong Lee², Sean Liu¹, ¹USDA ARS NCAUR, United States; ²Sejong University, United States

Characterization of the mechanical properties, freeze-thaw stability, and oxidative stability of edible, high-lipid rice bran wax-gelatin biphasic gels. Nuria Acevedo¹, Rodrigo Tarté², Karin Cho*³, ¹Griffith Foods, United States; ²Meat Science, Iowa State University, United States; ³Food Science and Human Nutrition, Iowa State University, United States

Study of microstructure entropy to optimize wax-based oleogel production technology. Varuzhan Sarkisyan*, Roman Sobolev, Yuliya Frolova, Alla Kochetkova, *Federal Research Center of Nutrition, Biotechnology and Food Safety, Russia*

Implications of Lipids Structuring in Food Applications II

EDIBLE APPLICATIONS TECHNOLOGY

Chairs: Nuria Acevedo, Iowa State University, USA; and Sabine Danthine, University of Liege, Belgium Tuesday, May 3, 2022 | 9:55–Noon EDT (Atlanta, USA; UTC-4)

The Implications of Lipids Structuring in Food Applications sessions highlight fat structuring; replacing semi-solid fats; developing gels from algal oils; candelilla wax, carnauba wax and beeswax emulsions; and wax-based oleogels.

Characterization and comparison of oleogels and emulgels prepared from *Schizochytrium* algal oil using monolaurin and MAG/DAG as gelators. Joseph Hyatt*, Siyu Zhang, Casimir Akoh, *Food Science and Technology, University of Georgia, United States*

Crystallization of wax esters—a prerequisite to understand wax-based oleogels. Henriette Brykczynski*¹, Eckhard Flöter², ¹Technical University Berlin, Germany; ²Food Process Engineering, Technical University of Berlin, Germany

Structured water-in-oil emulsions developed with candelilla wax. Jorge F. Toro-Vazquez*1, Anaid De la Peña-Gil¹, Miriam A. Charó-Alonso¹, David Pérez-Martinez², ¹Food Physicochemistry, UASLP-FCQ, Mexico; ²UASLP-FCQ, United States

Carnauba wax and beeswax as structuring agents for surfactant-free water-in-oleogels emulsions. Ivana A. Penagos*1, Juan S. Murillo Moreno², Koen Dewettinck², Filip Van Bockstaele², ¹Food Structure & Function Research Group, Ghent University, Belgium; ²Department of Food Technology, Safety and Health, Ghent University, Belgium

Phase Transitions and Interfacial Phenomena in Complex Food Systems

EDIBLE APPLICATIONS TECHNOLOGY

Chairs: Andrew Gravelle, University of California, Davis, USA; and Reed Nicholson, Motif FoodWorks, Inc., USA

Tuesday, May 3, 2022 | 1:25–3:30 p.m. EDT (Atlanta, USA; UTC-4)

The Phase Transitions and Interfacial Phenomena in Complex Food Systems session includes the design of bigels; oleofoams for food; diacylglycerol-based SLNs and Pickering W/O emulsions; and oil-in-water bilayer nanoemulsions.

From molecular assemblies to nutritious food products. Maya Davidovich-Pinhas*, *Technion—Israel Institute of Technology, Israel*

Role of interfacial compositions in achieving dispersed phase-induced gelation and controlled digestion of oil-in-water bilayer nanoemulsions. Kunal Kadiya*1, Supratim Ghosh², ¹Department of Food and Bioproduct Sciences, University of Saskatchewan, Canada

Tailored rigidity of W/O Pickering emulsions using diacylglycerol-based surface-active solid lipid nanoparticles. Yong Wang*, Chaoying Qiu¹, Guoyan Li, Jinan University, China (People's Republic)

Edible oleofoams stabilized by fatty acid and fatty alcohol crystalline particles. Anne-Laure Fameau*, *INRAE, France*

Fabrication and characterization of oleofoams composed of the edible oils and tribehenoyl-glycerol: Towards stable and higher air content colloidal system. Kazuki Matsuo*1, Satoru Ueno², ¹POLA Chemical Industries, Inc., Japan; ²Hiroshima University, Japan

Surfactants in Food

EDIBLE APPLICATIONS TECHNOLOGY

Joint session with the Surfactants and Detergents Division

Chairs: Pulari Krishnankutty Nair, Danone North America, USA; and Kaustuv Bhattacharya, IFF, Denmark Tuesday, May 3, 2022 | 3:55–6 p.m. EDT (Atlanta, USA; UTC-4)

The Surfactants in Food session includes research on the transport of lipid oxidation intermediates; food-grade lecithin microemulsions for oil extraction; local distribution of limonene in phospholipid vesicles; and understanding the reactivity of sucralose versus sucrose using lipase catalyzed trans-esterification.

Local distribution of limonene in phospholipid vesicles. Ann-Dorie Webley*1, Stephanie Dungan¹, Susan Ebeler³, ¹Food Science and Technology, University of California Davis, United States; ³Viticulture and Enology, University of California Davis, United States

Transport of lipid oxidation intermediates and its impact on the lipid oxidation rate in a model food emulsion. Sten ten Klooster*1 (Edible Applications Technology Division Student Award), Karin Schroën¹, Claire Berton-Carabin², ¹Food Process Engineering, Wageningen University, Netherlands, ²INRAE Nantes, France

Extraction of clove oil via solvent-enhanced capillary displacement. Carol Tan*, Edgar Acosta Chemical Engineering and Applied Chemistry, University of Toronto, Canada

Sucralose hydrogels: Peering into the reactivity of sucralose versus sucrose using lipase catalyzed trans-esterification. George John*1, Malick Samateh1, Siddharth Marwaha2, Jose James2, Vikas Nanda2, 1*Chemistry and Biochemistry, City College of New York (CUNY), United States; 2*Biochemistry, Rutgers University, United States

Panel discussion

Interactions Between Lipids and Other Ingredients in Plant-based Products

EDIBLE APPLICATIONS TECHNOLOGY

Chairs: Karel Hrncirik, Upfield, Netherlands; and Zong Meng, Jiangnan University, China Wednesday, May 4, 2022 | 7:25–9:30 a.m. EDT (Atlanta, USA; UTC-4)

This session covers oil structuring to replace trans and saturated fats; detecting thiol moieties; healthy alternatives to solid fats; and crosslinking gelatin with tannic acid.

Polysaccharide microgel particles-dominated Pickering emulsion gels for oil structuring: Formation, interfacial layer construction, and physical properties. Zong Meng*, Qinbo Jiang, School of Food Science and Technology, Jiangnan University, China (People's Republic)

Development and characterization of a novel, edible oleocolloid made of rice bran wax oleogel and sodium alginate-kappa-carrageenan hydrogel. Julia Nutter*¹, Xiaolei Shi¹, Nuria Acevedo², ¹Food Science and Human Nutrition, Iowa State University, United States; ²Griffith Foods, United States

Spontaneous aggregation of glutathione in aqueous solutions and the use of Ellman's procedure to detect thiol moieties. Shajahan G. Razul*¹, Gurpreet Matharoo², Iris Joye³, Wei Cao³, Erzsebet Szabo⁴, David A. Pink⁵, ¹Chemistry, St. Francis Xavier University, Canada; ²ACENET/Physics Dept., Compute Canada/ACENET, Canada; ³Food Science, University of Guelph, Canada; ⁴Physics, St. Francis Xavier University, Canada; ⁵Physics/Food Science, St. Francis Xavier University/University of Guelph, Canada

Effect of crosslinking gelatin with tannic acid on the mechanical and thermal properties of gelatin—beeswax biphasic gel. Ariana Saffold*1, Nuria Acevedo², ¹Food Science and Human Nutrition, Iowa State University, United States; ²Griffith Foods, United States

Panel discussion

Edible Applications Technology Poster Session

Chair: Supratim Ghosh, University of Saskatchewan, Canada

Effect of the Fat Content of Cream on the Physical Properties of Butter. Annalisa Jones*, Silvana Martini, *Utah State University, United States*

Plant-based adipose tissue developed using advanced emulsion technology: Comparison of soy-based high internal phase emulsions with beef adipose tissue. Xiaoyan Hu*, David J. McClements, Food Science, University of Massachusetts Amherst, United States

Monoglyceride type and concentration affect the rheological and structural properties of Pickering stabilized oleofoams. Matteo Grossi*, Bingcan Chen, Plant Science, North Dakota State University, United States

Destabilization of particle-stabilized emulsions with non-ionic surfactants. Malek El-Aooiti*¹, Auke de Vries², Dérick Rousseau¹, ¹Chemistry and Biology, Ryerson University, Canada; ²Ryerson University, Canada,

Animal fat replacement with faba bean protein-stabilized oil-in-water emulsion gels in hybrid bologna formulations. Fatemeh Keivaninahr¹, Oluwafemi J. Coker*¹, Phyllis J. Shand¹, Supratim Ghosh², ¹Department of Food and Bioproduct Sciences, University of Saskatchewan, Canada ²University of Saskatchewan, Canada

Microstructure controlling on the printability of high oil paste formulated with nanoporous starch aerogels (NSAs). Lingyi Liu* (Honored Student Award Winner; Manuchehr Eijadi Award Winner), Ozan Ciftci, Food Science and Technology, University of Nebraska–Lincoln, United States

Improving the consistency of high internal phase water-in-oil emulsions stabilized by fat crystals

Natalia Mello*¹, Dérick Rousseau², ¹Ryerson University, Canada; ²Department of Chemistry and Biology, Ryerson University, Canada

Does cannabidiol affect the physical properties of anhydrous milk fat and palm kernel oil? Joseph Cooney*1, Silvana Martini^{2, 1}Department of Nutrition, Dietetics and Food Sciences, Utah State University, United States; ²Utah State University, United States

Physical properties of beeswax-based oleogel-emulsion as a delivery system of probiotics. Rycal Blount*, North Carolina A&T State University, United States

Consumers' perceptions and associations on plant-based cheese analogue in Malaysia. Amelia Najwa Ahmad Hairi*¹, Ungku Fatimah Ungku Zainal Abidin², Maimunah Sanny², Nur Qistina Aznor Shahril², ¹Oils and Fats, Sime Darby Plantation Research Sdn Bhd, Malaysia; ²Universiti Putra Malaysia, Malaysia

Cocoa butter crystallization and fat bloom formation in the presence of rice bran wax. Pawitchaya Podchong*¹, Sopark Sonwai², Dérick Rousseau³, ¹Department of Food Science and Technology, Faculty of Agricultural Technology and Agro-Industry, Rajamangala University of Technology Suvarnabhumi, Thailand; ²Department of Food Technology, Faculty of Engineering and Industrial Technology, Silpakorn University, Thailand; ³Department of Chemistry and Biology, Ryerson University, Canada

Effect of cannabidiol on crystallization behavior and physical properties of cocoa butter and palm oil. Isaac Hilton*1, Joseph Cooney², Silvana Martini¹, ¹Utah State University, United States; ²Department of Nutrition, Dietetics and Food Sciences, Utah State University, United States

African butter seed fat: A potential substitute for cocoa butter. Sandaru Jayathissa*¹, Buddhika Silva², Shiromi De Silva³, Renuka Jayatissa², Terrence Madhujith¹, ¹Food Science and Technology, University of Peradeniya, Sri Lanka; ²Department of Nutrition, Medical Research Institution, Sri Lanka; ³Department of Electron microscopy, Medical Research Institute, Sri Lanka

Temperature-dependent phase behaviour of blends of SSS (tristearin) and SSO (1,2-distearoyl-3-oleoyl-rac-glycerol). Khakhanang Wijarnprecha*¹, Ryan West², Dérick Rousseau³, ¹Ryerson University, Canada; ²Mondelez International, United States; ³Department of Chemistry and Biology, Ryerson University, Canada

Temperature-dependent microstructure and rheology of fat in adipose tissue in pork, beef and lamb. Khakhanang Wijarnprecha*¹, Philipp Fuhrmann², Christopher Gregson³, Matt Sillick³, Sopark Sonwai⁴, Dérick Rousseau², ¹Ryerson University, Canada; ²Department of Chemistry and Biology, Ryerson University, Canada; ³Paragon Pure Inc, United States; ⁴Silpakorn University, Thailand

Inclusion complexes between amylose and long-chain dicarboxylic acids prepared by jet cooking: Characterization and thermal properties. James Kenar*¹, David Compton², Steve Peterson³, Frederick Felker¹, ¹Functional Food Research, USDA ARS MWA NCAUR, United States; ²Renewable Products Technology, USDA ARS MWA NCAUR, United States; ³Plant Polymer Research, USDA ARS MWA NCAUR, United States

Exploring plant biodiversity to extract oil bodies for sustainable food applications. Nathalie Barouh*¹, Claire Berton-Carabin², Thierry Chardot³, Sabine D'andrea³, Jean-François Fabre⁴, Yann Gohon³, Eric Lacroux⁷, Valérie Lullien-Pellerin⁵, Valérie Micard⁵, Othmane Merah⁴, Anne Meynier², Romain Valentin⁴, Véronique Vié⁶, Pierre Villeneuve⁷, Claire Bourlieu-Lacanal⁵, ¹CIRAD, France; ²UR BIA, INRAE, France; ³UMR 1318 Institut Jean-Pierre Bourgin (IJBP), INRAE/ AgroParisTech/ Université Paris-Saclay, INRAE, France⁴UMR 1010 LCA, INRAE/ Université de Toulouse/INPT/ENSIACET, United States, 4⁵UMR IATE,

INRAE/Univ Montpellier/Institut Agro, France; ⁶Soft Matter, Institut de Physique de Rennes, Université de Rennes 1, France; ⁷UMR QUALISUD, CIRAD/Univ Montpellier/Institut Agro/IRD/Univ Réunion, France

Candelilla and rice bran wax as oleogelators in soybean oil for deep frying application. Maslia Manja Badrul Zaman*¹, Amelia Najwa Ahmad Hairi¹, Norliza Saparin², Ahmadilfitri Md Noor², ¹Oils and Fats, Sime Darby Plantation Research Sdn Bhd, Malaysia; ²Sime Darby Plantation Research Sdn Bhd, Malaysia

Chemical and physical stability of EPA and DHA fortified plant milk analogs. Abigail A. Sommer*, Yael Vodovotz, *Department of Food Science and Technology, The Ohio State University, United States*

Comparative analysis of cocoa beans from different climatic regions in Togo. Daniel Kalnin*, ISTOM, France

Effect of dispersed aqueous droplet volume fraction on the rheology and structure of water-in-oil emulsions stabilized with fat crystals. Veronica Hislop*¹, Dérick Rousseau², ¹Molecular Science, Ryerson University, Canada; ²Department of Chemistry and Biology, Ryerson University, Canada

Effect of waxes on oil separation and texture properties of peanut butter. Md. Jannatul Ferdaus*¹, Rycal Blount², Nathan Zauner¹, Roberta Silva¹, ¹Family and Consumer Sciences, North Carolina A&T State University, United States; ²North Carolina A&T State University, United States

Effects on the physical properties of corn oil oleogels structured with different ratios of rice bran or carnauba waxes. Jabarius Jones*1, Jaden Payne1, Rycal Blount2, Roberta Silva1, 1Family and Consumer Sciences, North Carolina A&T State University, United States; 2North Carolina A&T State University, United States

Physicochemical properties of bambangan (Mangifera pajang) kernel fat and its stearin mixtures with cocoa butter. Hasmadi B. Mamat*¹, Norazlina Ridhwan², ¹Faculty of Food Science and Nutrition, University Malaysia Sabah, Malaysia; ²Universiti Malaysia Sabah, Malaysia

Solubilized proteins as a fat block in production. Stephen Kelleher*, Wayne Saunders, William Fielding, *Kemin Industries, United States*

Static in vitro digestibility impacted by emulsion crystallinity under different experimental conditions. Ye Ling Li*, Amanda J. Wright, Human Health & Nutritional Sciences, University of Guelph, Canada

Sucrose esters potential as oleogelators to form oleogels using different structuration routes. Thais da Silva*¹, Vicent Baeten², Sabine Danthine¹, ¹Gembloux Agro-Bio Tech, University of Liege, Belgium; ²Quality and Authentication of Products, Walloon Agricultural Research Centre, Belgium

Tuning suspension rheology in hybrid capillary suspension-oleogels for edible oil structuring. Selvyn Simoes*1, Dérick Rousseau², ¹Ryerson University, Canada; ²Department of Chemistry and Biology, Ryerson University, Canada