2022 AOCS Annual Meeting & Expo Biotechnology Program

As of March 23, 2022. Subject to change.

Contents

General Biotechnology	. 1
Biosurfactants	. 2
Biorenewable Polymers	. 2
New Crops for Oils/Feedstock Engineering	. 3
Gene Editing Technologies	. 4
Biocatalysis—Enzyme Processing	. 4
Breeding and Biotechnology for Improved Quality of Food Proteins	. 5
Fermentation	. 5
Biotechnology Poster Session	. 6

General Biotechnology

BIOTECHNOLOGY Chairs: Todd Underiner, Procter & Gamble, USA; and Sarah Willett, Kerry Group, USA Monday, May 2, 2022 | 9:55 a.m.–Noon EDT (Atlanta, USA; UTC-4)

Enzyme-based soy processing. Lu-Kwang Ju^{*1} (*Biotechnology Division Ching Hou Biotechnology Award Winner*), Abdullah Al Loman², Qian Li³, S. M. Mahfuzul Islam⁴, Ashwin Sancheti⁵, Md Fauzul Kabir¹, ¹Department of Chemical, Biomolecular, and Corrosion Engineering, University of Akron, United States; ²Technical Development, Biogen, United States; ³Catalent, United States; ⁴Archer Daniels Midland Company, United States; ⁵CMC, DermBiont Inc, United States

Simultaneous loading of (–)-epigallocatechin gallate and ferulic acid in chitosan-based nanoparticles as effective antioxidant and skin-whitening agent. Guanghui Li^{*1}, Chaoying Qiu¹, Ning Liu², Xuanxuan Lu¹, Yong Wang¹, ¹Food Science and Engineering, Jinan University, China (People's Republic); ²Shaanxi University of Science and Technology, China (People's Republic)

ISO TC 34/SC 16 Horizontal methods for molecular biomarker analysis—international standards for molecular biomarker analysis/isothermal nucleic acid amplification methods. Michael Sussman*, ISO/USDA, AMS, L&P, Agricultural Analytics Division, United States

Lipozyme TL IM-catalyzed synthesis of γ-linolenic acid rich triacylglycerol from borage oil as a novel strategy. Hui su Yoon^{*1}, In-Hwan Kim², ¹Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University/BK21FOUR R&E Center for Learning Health Systems, Korea University, Republic of Korea; ²Korea University, Republic of Korea

Concentration of eicosapentaenoic acid via *Candida rugosa* lipase-catalyzed esterification with phytosterol and fatty acid from anchovy oil. Jeanne Kang^{*1}, In-Hwan Kim², ¹Department of Integrated

Biomedical and Life Science, Graduate School, Korea University/BK21FOUR R&E Center for Learning Health Systems, Korea University, Republic of Korea; ²Korea University, Republic of Korea

Engineering of microalgae toward biodiesel: Facts and prospects. F. Xavier Malcata* (Stephen S. Chang Award Winner), Department of Chemical Engineering—LEPABE, FEUP, Portugal

Biosurfactants BIOTECHNOLOGY Joint session with the Surfactants and Detergents Division Sponsored by Testfabrics Inc. Chairs: Phil Vinson, Procter & Gamble Co, USA; George Smith, Sasol, USA; and Douglas Hayes, University of Tennessee, USA Monday, May 2, 2022 | 3:55–6 p.m. EDT (Atlanta, USA; UTC-4)

The Biosurfactants session highlights a method of synthesizing α -monostearin for cleaner large-scale production of α -monoglycerides; the potential of sophorolipids as transport carriers; overview of the properties of oleo-furan surfactants; biopolymer-biosurfactant systems; and molecular simulation for biosurfactant-based cosmetic formulations.

Selective synthesis of alpha monoglycerides by clean method: Techno-economic and environmental assessment. Ahmad Mustafa^{*1}, Reham Mohsen², Fumiya Niikura³, ¹General Systems Engineering, October University for Modern Sciences and Arts (MSA), Egypt; ²Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Egypt; ³Lion Corporation, Japan

Sugar for hydrophobes? Fermentation to palm-free detergent alcohols at scale. Risha Bond*, *Genomatica, Inc., United States*

Oleo-furan surfactants as fully biorenewable, carcinogen-free drop-in replacements for commercial anionic surfactants. Shawn Eady*, *Sironix Renewables, United States*

The role of sophorolipid as carrier of active substances. Glen Lelyn Quan^{*1}, Michiaki Araki¹, Yoshihiko Hirata², Kentaro Matsumiya³, Yasuki Matsumura⁴, ¹Biochemical Laboratory, Saraya Co., Ltd., Japan; ²Product Development Division and Biochemical Laboratory, Saraya Co., Ltd., Japan; ³Graduate School of Agriculture, Kyoto University, Japan; ⁴Research Institute for Sustainable Humanosphere, Kyoto University, Japan

Biosurfactants and biopolymers: Between interactions, orthogonality and mutual responsivity. Niki Baccile*, Chloé Seyrig, Alexandre Poirier, *Sorbonne Université, France*

Molecular simulation as a tool for the design of biosurfactant-based cosmetic formulations. Benjamin Coscia^{*1}, Andrea Browning¹, Jeffrey Sanders², Mat Halls¹, ¹Schrodinger, United States; ²Materials Science, Schrodinger, United States

Biorenewable Polymers

BIOTECHNOLOGY Joint session with the Industrial Oil Products Division *Chairs: Eric Cochran, Iowa State University, USA; and Richard Ashby, USDA ARS ERRC, USA* Tuesday, May 3, 2022 | 7:05–9:30 a.m. EDT (Atlanta, USA; UTC-4)

The Biorenewable Polymers session features talks covering environmentally friendly coating products using soybean oil; synthesizing monomers with fatty acids; renewable lipid-based micelle nanoparticles

as amphiphilic drug carriers; photoinduced reactions to produce composites from biobased monomers; extending the lifespan of roofing shingles with soybean oil-based polymeric coatings; industrial uses of cashew nut shell liquid; and epoxy resins made from epoxidized algal, soybean, and linseed oils.

Cashew NutSell Liquid (CNSL), a promising source of biobased additives and building blocks for the industry. Benoit Briou*, Audrey Roy, Lucas Jego, Adélaïde Gartili; R&D, Orpia Innovation/ICGM, France

Plant oil based radically polymerizable monomers for sustainable polymers. Sylvain Caillol*, *ICGM, France*

Epoxy materials with triglyceride structure. Zoran S. Petrovic*, Jian Hong, Dragana Radojcic, *Kansas Polymer Research Center, Pittsburg State University, United States*

Bio-based cationic waterborne polyurethane dispersions from high oleic soybean oil. Jasna Djonlagic*, Milica Lovric Vukovic, Jian Hong, Zoran S. Petrovic, *Kansas Polymer Research Center, Pittsburg State University, United States*

Biobased composites from renewable monomers and cellulosic reinforcements by photoinduced processes. Sara Dalle Vacche*, *Department of Applied Science and Technology, Politecnico di Torino, Italy*

Soybean oil-based polymeric coatings for the rejuvenation of old asphalt shingles. Nacu B. Hernandez*, Andrew Becker, Michael Forrester, Eric Cochran, *Chemical and Biological Engineering, Iowa State University, United States*

Lipid derived block copolymers as amphiphilic nanocarriers for targeted delivery. Aman Ullah*, Huiqi Wang, Rehan Pradhan, *AFNS, University of Alberta, Canada*

New Crops for Oils/Feedstock Engineering

BIOTECHNOLOGY Joint session with the Industrial Oil Products Division Chairs: Roque Evangelista, USDA ARS NCAUR, USA; and Mahesh Balwant Khot, Farmsow Pvt. Ltd., India Tuesday, May 3, 2022 | 1:25–3:30 p.m. EDT (Atlanta, USA; UTC-4)

New Crops for Oils/Feedstock Engineering topics includes metabolic engineering of oilseeds; potential of <u>Chrysophyllum albidium</u> seed; pennycress as cover crop and source of food and oil; and the applications and potential of <u>Camelina sativa</u> and Carinata.

Carinata: An emerging biofuel feedstock platform. Rick Bennett*, Nuseed, Canada

Camelina breeding and development—A Canadian perspective. Christina Eynck*, Specialty Crop Breeding, AAFC, Canada

CoverCress—A novel oilseed winter crop with canola-like composition that helps sequester carbon and prevent soil erosion. Tim Ulmasov*, *CoverCress Inc., United States*

Targeted genome editing of industrial oilseed crops to enhance synthesis of functional lipids. Linah Alkotami^{*1}, Maliheh Esfahanian², Brice Jarvis³, Kathleen M. Schuler⁴, Jianhui Zhang⁵, Somnath Koley⁶, Doug K. Allen⁷, Chaofu Lu⁸, John Sedbrook⁹, Timothy Durrett¹, ¹Biochemistry and Molecular Biophysics, Kansas State University, United States; ²Plant Biology, Carnegie Institution for Science, United States; ³Illinois State University, United States; ⁴Biochemistry, Kansas State University, United States; ⁵Plant Sciences & Plant Pathology Department, Montana State University, United States; ⁶Donald Danforth

Plant Science Center, United States; ⁷Agricultural Research Service, U.S. Department of Agriculture/Donald Danforth Plant Science Center, United State; ⁸Montana State University, United States; ⁹Biological Sciences, Illinois State University, United States

Development of dedicated non-food oil crops for industrial oil production through metabolic engineering. Xueyuan Li, Emelie Ivarson, Li-Hua Zhu*, *Swedish University of Agricultural Sciences, Lomma, Sweden*

Viability of utilization of *Chrysophyllum albidium* **seed oil as bio-industrial fluid.** Chinedu M. Agu^{*1}, Goziya W. Dzarma¹, Albert C. Agulanna², Emeka L. Udokporo², ¹*Chemical Engineering, Michael Okpara University of Agriculture, Nigeria;* ²*Centre for Environmental Management and Control, University of Nigeria, Enugu Campus, Nigeria*

Gene Editing Technologies

BIOTECHNOLOGY Chairs: Tim Ulmasov, CoverCress, Inc., USA; and Timothy P. Durrett, Kansas State University, USA Tuesday, May 3, 2022 | 1:25–3:30 p.m. EDT (Atlanta, USA; UTC-4)

The Gene Editing Technologies session features talks examining issues around genome edited plants in grain and food.

Unlocking the next generation of row crop quality traits through genome editing. Julia Stevens*, *Plant Biotechnology, Bayer Crop Science, United States*

Utility of CRISPR/Cas in accelerating gene discovery in soybean. Minviluz Stacey*, *Division of Plant Science and Technology, University of Missouri, United States*

CRISPR/Cas9-based editing of OsNF-YC4/GmNF-YC4 promoter yields high-protein crops. Ling Li*, *Biological Sciences, Mississippi State University, United States*

Update on the revised USDA biotech regulation. Neil Hoffman*, *Animal Plant Health Inspection Service/Biotechnology Regulatory Services, United States*

Detection of genome edited products—is it CRISPR? Raymond D Shillito*, *Regulatory Science, BASF* (United States), United States

Biocatalysis—Enzyme Processing

BIOTECHNOLOGY Chairs: Jun Ogawa, Kyoto University, Japan; and Lu-Kwang Ju, The University of Akron, USA Tuesday, May 3, 2022 | 3:55–6 p.m. EDT (Atlanta, USA; UTC-4)

The Biocatalysis—Enzyme Processing session features talks on using phospholipases for enzymatic degumming; synthesizing oleochemicals by esterification using Eversa immobilized lipase; and proteins, lipids, and potential prebiotic oligosaccharides from chickpeas for industrial applications.

Production of value-added oleochemicals via Eversa immobilized lipase-catalyzed esterification. In-Hwan Kim*, Dongchan Oh, Suhyeon Choi, *Korea University, Republic of Korea*

Immobilized lipase in the synthesis of high purity medium chain diacylglycerols using a bubble column reactor: Characterization and application. Jiazi Chen*(*Biotechnology Division Student Award Winner*), *Jinan University, China (People's Republic)*

Applications and benefits of phospholipase a enzymes in seed oil processing. Ying Zha¹, Nikita Iltchenko^{*1}, Jesse Beam², ¹DSM Food & Beverage, Netherlands; ²DSM Food & Beverage, United States

Temperature effects on enzyme stability for carbohydrate hydrolysis of soy materials. Md Fauzul Kabir*, Lu-Kwang Ju, *Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, United States*

Bioprocessing strategies to improve the extractability and functional properties of lipids, proteins, and carbohydrates from full-fat chickpea flour. Fernanda Furlan Goncalves Dias*, Kazunori Machida, Juliana Leite Nobrega De Moura Bell, *University of California, Davis, United States*

Breeding and Biotechnology for Improved Quality of Food Proteins

BIOTECHNOLOGY Joint session with the Protein and Co-Products Division Chairs: Phil S. Kerr, Prairie AquaTech, LLC, USA; and Long Zou, Bunge Creative Solutions Center, USA Wednesday, May 4, 2022 | 7:25–9:30 a.m. EDT (Atlanta, USA; UTC-4)

The Breeding and Biotechnology for Improved Quality of Food Proteins session includes soybean varieties with desirable carbohydrate fraction; ultra-high protein soybeans; modifying oil and protein quality in hemp; methionine content in soybean; and hydrolysates from sunflower proteins.

High-yield soybean lines with improved seed protein and oil balance. George Graef*, Dept. of Agronomy & Horticulture, University of Nebraska-Lincoln, United States

Ultra-high protein soybeans for food and aquaculture. Michael Lassner*, Amfora, Inc., United States

Developing high yielding soybean varieties with desirable carbohydrate fraction for enhancing nutrition. Henry T. Nguyen*, Pengyin Chen, Tri D. Vuong, Haiying Shi, Dongho Lee, Ali Md Alikat, *Plant Science & Technology, University of Missouri, United States*

Evaluating breeding and management solutions for methionine content in soybean. William M. Singer^{*1}, Zachary Shea², Dajun Yu², Keren Brooks¹, Mark Reiter¹, David L. Holshouser¹, Haibo Huang³, Rouf Mian⁴, Maria L. Rosso¹, Bo Zhang¹, ¹School of Plant and Environmental Sciences, Virginia Tech, United States; ²Virginia Tech University, United States; ³Food Science and Technology, Virginia Tech, United States; ⁴Soybean & Nitrogen Fixation Unit, USDA-ARS, United States

Modifying oil and protein quality in hemp using modern conventional breeding approaches. Rich Fletcher*, *New West Genetics, United States*

Production of highly soluble and functional hydrolysates from sunflower proteins. Sophie Beaubier^{*1}, Sara Albe Slabi², Odile Mesieres³, Marine Bianeis², Olivier Galet², Romain Kapel³, ¹University of Lorraine, LRGP CNRS, France; ²Groupe AVRIL, France; ³LRGP CNRS UMR7274, France

Fermentation

BIOTECHNOLOGY Joint session with the Processing Division Sponsored by Desmet Ballestra North America, Inc. Chairs: Tsunehiro Aki, Hiroshima University, Japan; and Mahesh Balwant Khot, Farmsow Pvt. Ltd., India Wednesday, May 4, 2022 | 9:55 a.m.–Noon EDT (Atlanta, USA; UTC-4) The Fermentation session includes talks on isolating microorganisms in crude glycerol to measure fatty acid composition; using yeasts to produce biodiesel and healthier metabolites; enhancing oil production from yeast; biodiesel production using agro-waste; and improving the quality of pennycress meal.

Fungal bioprocessing to improve quality of pennycress meal as potential feeding ingredient for monogastric animal. Bo Hu^{*1}, Xiao Sun¹, David Marks², Bo Hu¹, ¹Bioproducts and Biosystems Engineering, University of Minnesota, United States; ²Plant and Microbial Biology, University of Minnesota, United States

Rhodotorula mucilaginosa R2: A potent oleaginous yeast isolated from traditional fermented food as a promising platform for the production of lipid-based biofuels, bioactive compounds and other valueadded products. Pritam Bardhan*, Manabendra Mandal, *Department of Molecular Biology & Biotechnology, Tezpur University, India*

Genetic modification to enhance single cell oil production in the oleagineous yeast Rhodotorula *mucilaginosa*. Sheetal Bandhu^{*1}, Debashish Ghosh², ¹Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India; ²Biochemistry and Biotechnology, CSIR-Indian Institute of Petroleum, India

Studies on filamentous fungus Fusarium sp. Accumulating hydroxy fatty acids. Eiji Sakuradani*, Kai Yoshida, Naomi Murakawa, Takaiku Sakamoto, *Tokushima University, Japan*

Process optimization for oiodiesel production using agro-waste substrate. Ameeta Ravikumar^{*1}, V. Ravi Kumar², Rashmi Bed¹, ¹Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, India; ²Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory (CSIR-NCL), India

Utilization of sugar cane bagasse as a substrate for fatty acid production by *Aurantiochytrium* **sp.** Kenshi Watanabe*, *Hiroshima Univeristy, Japan*

Biotechnology Poster Session

Chair: Sarah Willett, Kerry Group, USA

BIO-01 An efficient and environment friendly bio-based polyols through liquefaction: Liquefaction temperature and catalyst concentration optimization and utilized for rigid polyurethane foams. Chiragkumar Patel^{*1}, Nikhil Dhore², ¹SICART, India; ²IICT Hyderabad, India

BIO-02 Effect of oil carbon chain length on the physical stability and bioactivity of nanoemulsion delivery systems incorporating lipophilic ingredients. Xin Guo^{*1} (*Biotechnology Division Student Award Winner*), Ming Chang², ¹University of Massachusetts, Amherst, United States; ²Jiangna University, China (*People's Republic*)

BIO-03 Encapsulation of melittin in bicontinuous microemulsions for topical delivery. Madison Oehler^{*1}, Douglas Hayes¹, Doris D'Souza², ¹Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, United States; ²Food Science and Technology, The University of Tennessee Knoxville, United States

BIO-04 International standards for food authenticity and allergen detection from ISO TC 34/SC 16 horizontal methods for molecular biomarker analysis. Michael Sussman*, *ISO/USDA, AMS, L&P, Agricultural Analytics Division, United States* **BIO-05 Measurement of volumetric mass transfer coefficient in lab-scale stirred tank reactors: Is there a point of diminishing returns for impeller speed and gas flowrate?** Robert Bertrand^{*1}, Emmanuel Revellame², Lisa Stephanie Dizon¹, Kristel Gatdula², Remil Aguda², ¹Chemical Engineering, University of Louisiana at Lafayette, United States; ²University of Louisiana at Lafayette, United States

BIO-06 Variation in cellulase production during solid and submerged state fermentation of raw and processed canola meal by *Aureobasidium pullulans*, *Neurospora crassa*, and *Trichoderma reesei*. Ahmad F. Alhomodi^{*1}, William Gibbons², Bishnu Karki², ¹Dept. of Biology and Microbiology, South Dakota State University, United States; ²South Dakota State University, United States

BIO-07 A Comparative Analysis of NanoLuc Luciferase and Alkaline Phosphatase as Reporter Proteins for Phage-Based Pathogen Detection. Joey Talbert *, Shalini Wijeratne, Arubdan Bakshi, *Department of Food Science and Human Nutrition, Iowa State University, United States*

BIO-08 Characterization of monoolein liquid crystals using oscillatory rheology and strain rate frequency superposition. Shweta Mistry^{*1}, Philipp Fuhrmann¹, Dérick Rousseau², ¹Ryerson University, Canada; ²Department of Chemistry and Biology, Ryerson University, Canada

BIO-09 CRISPR/Cas9-targeted mutagenesis of KTI1 and KTI3 to reduce trypsin inhibitors in soybean seeds. Zhibo Wang^{*1}, Zachary Shea¹, Maria L. Rosso², Chao Shang¹, Jianyong Li¹, Patrick Bewick¹, Bingyu Zhao¹, Bo Zhang², ¹Virginia Tech, United States; ²School of Plant and Environmental Sciences, Virginia Tech, United States

BIO-10 Effects of fungal fermentation on cellulase activity along with the solubility and protein yield on different economically important substrates. Mohammad Raihan*¹, Ahmad F. Alhomodi², Mark Berhow³, William Gibbons¹, Bishnu Karki¹, ¹South Dakota State University, United States; ²Dept. of Biology and Microbiology, South Dakota State University, United States; ³USDA, United States

BIO-11 Effects of growth conditions on the bacterial conversion of methane to lipids. Lisa Stephanie Dizon^{*1}, Robert Bertrand¹, Mark Zappi¹, Rafael Hernandez¹, William Holmes², Dhan Lord Fortela¹, Emmanuel Revellame³, ¹Chemical Engineering, University of Louisiana at Lafayette, United States; ²Energy Institute of Louisiana, University of Louisiana at Lafayette, United States; ³Industrial Technology, University of Louisiana at Lafayette, United States

BIO-12 In-situ direct transesterification process optimization for biodiesel production from Aspergillus terreus wet biomass. Rashmi Bed^{*1}, Ameeta Ravikumar¹, V. Ravi Kumar², ¹Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, India; ²Chemical Engineering and Process Development Division, National Chemical Laboratory, Pune, India

BIO-13 Lignin-alginate-based biopolymers for the bioencapsulation of Rhizobium. Toby A. Adjuik*, Sue E. Nokes, Michael D. Montross, *Biosystems and Agricultural Engineering, University of Kentucky, United States*

BIO-14 Novel strategy for synthesis of stearidonic acid enriched triacylglycerol from ahiflower seed oil via a two-step enzyme reaction. Yu Jin Lee^{*1}, Changhwan Ju², In-Hwan Kim², ¹Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University/BK21FOUR R&E Center for Learning Health Systems, Korea University, Korea University, Republic of Korea; ²Korea University, Republic of Korea

BIO-15 Optimizing corn steep liquor as fermentation media for the production of recombinant antifreeze proteins. Bibek Byanju^{*1}, Buddhi Lamsal², Swastik Sen³, Thomas Mansell³, ¹Food Science and

Human Nutrition, Iowa State University, United States; ²Iowa State University (ISU), United States; ³Department of Chemical and Biological Engineering, Iowa State University, United States

BIO-16 Phosphatidylglycerol-specific phospholipase C from *Amycolatopsis* sp. NT115: Biochemical characterization and heterologous expression. Daisuke Sugimori*, Kiyoto Kajiyama, Shunsuke Kawashima, Yuho Matsumoto, *Fukushima University, Japan*

BIO-17 Probiotic fermentation to improve nutritional profile in extruded or ground corn and wheat brans. Bibek Byanju^{*1}, Buddhi Lamsal², ¹Food Science and Human Nutrition, Iowa State University, United States; ²Iowa State University (ISU), United States

BIO-18 Statistical optimization of media for enhancing intracellular lipid content in Yarrowia lipolytica NCIM 3589 grown on waste cooking oil for biodiesel production. Shubhangi Jagtap^{*1}, Ameeta Ravikumar¹, Gouri Raut², V. Ravi Kumar³, ¹Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, India; ²Bioenergy, Agharkar Research Institute, India; ³Chemical Engineeging and Process Development Division, CSIR-National Chemical Laboratory (CSIR-NCL), India

BIO-19 Synthesis of pinolenic acid enriched triacylglycerol from pine nut oil via a two-step consecutive enzyme reaction. Mi Soon Park^{*1}, Yu Jin Lee¹, In-Hwan Kim², ¹Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University/BK21FOUR R&E Center for Learning Health Systems, Korea University, Republic of Korea; ²Korea University, Republic of Korea