Certified Reference Materials

AOCS 0306-H10

Report of the certification process for

T25

Maize Certified Reference Materials

Tenth Batch

Denise Williams
Technical Services Manager

Scott Bloomer
Technical Director
Legal Notice

Neither AOCS nor any person acting on behalf of AOCS is responsible for the use which might be made of the following information.

AOCS Mission Statement:

AOCS advances the science and technology of oils, fats, proteins, surfactants and related materials, enriching the lives of people everywhere.

More information regarding AOCS is available at http://www.aocs.org
Contents

Abstract ... 4
Acknowledgements ... 5
Glossary .. 6
Introduction ... 8
Materials and Methods .. 8
Stability .. 9
Results and Discussion .. 10
 Sample Homogeneity ... 10
 Prepared Sample Verification .. 11
References ... 12
Abstract

This report describes the preparation and certification of the maize CRM AOCS 0306-H10 produced by AOCS Technical Services in 2018. The CRMs have been prepared according to ISO 17034:2016 and are intended to serve as control material for third party testing of maize for transformation events. The presence of T25 in the maize was verified using event-specific, qualitative PCR analysis by Eurofins-GeneScan, New Orleans, LA (an ISO 17025 accredited laboratory). AOCS 0306-H10 is available in 0.5 ml skirted screw-cap self-sealing tubes. The T25 (Breeding line: He/89 x Yellow Dent) DNA was provided by BASF Agricultural Solutions Seed US LLC and was extracted from clean leaves. Samples shall be stored dry in a sealed container at +4 °C in the dark.
Acknowledgements

The authors would like to express sincere appreciation and gratitude to several individuals and their companies for support and guidance throughout this project. Thanks go to Ray Shillito and Benoit Maes, BASF Agricultural Solutions Seed US LLC, for offering AOCS the opportunity to manufacture and distribute these products; to Heather Waxdahl, SGS-Midwest for packaging the samples; and to Frank Spiegelhalter, Greg Ditta, E. Pearce Smith, and Daniel Thompson, Eurofins-GeneScan for event-specific, qualitative PCR analysis including the provision of information on running the analyses and interpreting the results.
Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOCS</td>
<td>American Oil Chemists' Society</td>
</tr>
<tr>
<td>Conventional Crop</td>
<td>A related organism/variety, its components and/or products for which there is experience of establishing safety based on common use as food</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic Acid is the linear, double-helix macromolecule that makes up the genetic material of most organisms</td>
</tr>
<tr>
<td>Detection Limit</td>
<td>Lowest level at which target DNA can be detected in a sample.</td>
</tr>
<tr>
<td>EC</td>
<td>European Commission</td>
</tr>
<tr>
<td>Genome</td>
<td>The full set of genes and associated DNA characteristic of an organism</td>
</tr>
<tr>
<td>GMO</td>
<td>Genetically modified/engineered organism: an organism in which the genetic material has been changed through modern biotechnology in a way that does not occur naturally by multiplication and/or natural recombination.</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organisation for Standardisation</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction: technique used to determine whether a sample of plant tissue contains a particular DNA sequence. PCR relies on primer sets that bind to a particular target DNA sequence and a special DNA-copying enzyme</td>
</tr>
</tbody>
</table>
(DNA polymerase) that exponentially amplifies the target sequence for identification and measurement

Qualitative PCR
PCR methods that determine the presence or absence of a specific target DNA sequence at a particular level of detection

Quantitation Limit
Lowest level at which the amount of target DNA sequence in a sample can be reliably quantitated

Quantitative PCR
PCR methods that estimate the relative amount of target DNA sequence in a mixture of DNA molecules

Trait: T25
Phosphinothricin (PPT) herbicide tolerance, specifically glufosinate ammonium
Introduction

Plant genetic modification is an extension of traditional plant breeding. It allows plant breeders to develop crops with specific traits including insect, disease, and herbicide resistance; processing advantages; and nutritional enhancement. An important component for identifying these new traits is a Certified Reference Material created from leaf, seed, or grain containing the new trait as well as a CRM created from the conventionally bred matrix. The European Commission has mandated that from 18 April 2004, a method for detecting a new event derived from transgenic technology and Certified Reference Material must be available before the EC will consider authorizing acceptance of a new crop derived from transgenic technology. Several nations outside Europe also require grain and ingredients to be labeled above a threshold level before accepting a shipment.

To meet the above regulatory requirements for GMO determination, AOCS 0306-H10 was manufactured from maize according to ISO 17034:2016 and in accordance with EC No 1829/2003. The CRM is available from AOCS.

Materials and Methods

BASF Agricultural Solutions Seed US LLC prepared the bulk material by taking source leaf material from plants which had been tested individually using several quality standards and was grown from seeds harvested from plants that had themselves passed the same criteria. Plants not meeting the quality standards were removed and destroyed. Leaf material was harvested from the plants which met the quality standards and frozen immediately and stored at -70 °C. The genomic DNA was extracted from leaves of one or more plants according to CTAB-based (Doyle JJ and Doyle JL, 1987) protocol. The integrity and concentration of the genomic DNA was determined by electrophoresis in a 1.0% agarose gel and ethidium bromide-staining and compared to lambda molecular weight standards by digital imaging quantification. The concentration measurement was done in triplicate, repeated in three different gels. No indications for physical degradation were apparent and the DNA migrated at positions higher than 40 Kb.
BASF Agricultural Solutions Seed US LLC delivered 2 mg of T25 maize leaf DNA extract to AOCS. The five (5) working samples of DNA, 10 µg each, were prepared from the composite and sent to Eurofins-GeneScan, New Orleans, LA (an ISO 17025 accredited laboratory) for event-specific, qualitative PCR analysis to screen for the presence of the intended event, T25. This testing was for presence confirmation as well as homogeneity purposes.

The Genomic DNA was tested by BASF to show the presence of T25 and Adh1 events and the absence of 3’nos sequences, MON810 sequences, TC1507 sequences, and bar sequences. The T25 maize leaf DNA was packaged by SGS-Midwest Seed Services in sterile, 0.5 ml skirted screw-cap self-sealing tubes in aliquots of 10 µg DNA.

AOCS used the Random Number Generator function of Microsoft Excel to select samples for verification of gene presence, homogeneity, and to rule out degradation during packaging. Sample numbers AOCS 0306-H10: 28, 35, 87, 145, and 172 were sent to Eurofins-GeneScan, New Orleans, LA (an ISO 17025 accredited laboratory) for event-specific, qualitative PCR analysis to screen for T25 presence in the samples.

Stability

Stability of these CRMs has been listed as 1 year from the introduction date. The materials were sealed and stored in the dark at +4 °C, therefore not exposed to air and are expected to be stable for longer than the estimated expiration date. The stability of the leaf DNA extract material will be reevaluated annually. If the samples still test positive for the presence of the trait, the certificates will be extended.
Results and Discussion

Sample Homogeneity
The PCR data for the T25 homogeneity samples is presented in Table 1.

Table 1. Results of the homogeneity testing performed by Eurofins-GeneScan, New Orleans, LA (an ISO 17025 accredited laboratory) on the T25 bulk material 0306-H10 provided by BASF Agricultural Solutions Seed US LLC

<table>
<thead>
<tr>
<th>Sample</th>
<th>T25 Presence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homogeneity Sample 1</td>
<td>Positive</td>
</tr>
<tr>
<td>Homogeneity Sample 2</td>
<td>Positive</td>
</tr>
<tr>
<td>Homogeneity Sample 3</td>
<td>Positive</td>
</tr>
<tr>
<td>Homogeneity Sample 4</td>
<td>Positive</td>
</tr>
<tr>
<td>Homogeneity Sample 5</td>
<td>Positive</td>
</tr>
</tbody>
</table>
Prepared Sample Verification
After the bulk material was packaged, five (5) samples were identified by the Microsoft Excel Random Number Generator and sent to Eurofins-GeneScan, New Orleans, LA (an ISO 17025 accredited laboratory) for event-specific, qualitative PCR analysis. These results are presented in Table 2. This data confirms the presence of the T25 gene after the packaging of AOCS 0306-H10. These results are consistent with the homogeneity data presented in Table 1.

<table>
<thead>
<tr>
<th>Sample</th>
<th>T25 Presence</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOCS 0306-H10 28</td>
<td>Positive</td>
</tr>
<tr>
<td>AOCS 0306-H10 35</td>
<td>Positive</td>
</tr>
<tr>
<td>AOCS 0306-H10 87</td>
<td>Positive</td>
</tr>
<tr>
<td>AOCS 0306-H10 145</td>
<td>Positive</td>
</tr>
<tr>
<td>AOCS 0306-H10 172</td>
<td>Positive</td>
</tr>
</tbody>
</table>
References

Center for Environmental Risk Assessment GM Database
http://www.cera-gmc.org/?action=gm_crop_database

Eurofins-GeneScan; 2219 Lakeshore Drive, Suite 400, Metairie, LA 70122; Telephone: +1 504 297 4330 Toll Free: +1 866 535 2730 Fax: +1 504 297 4335
http://www.gmotesting.com

ISO Guide 30:2015 (E/F), Reference Materials – Selected Terms and Definitions

SGS Midwest Seed Services, 236 32nd Avenue, Brookings, South Dakota 57006 Telephone: +1 605 692 7611 Toll Free: +1 877 692 7611 Fax: +1 605 692 7617 http://www.mwseed.com/