Searching and finding unusual fatty acids and compounds of the unsaponifiable matter

Walter Vetter

Universität Hohenheim
Institut für Lebensmittelchemie
D-70593 Stuttgart
polyhalogenated compounds
halogenated natural products
halogenated flame retardants
stable isotope mass spectrometry (IRMS)
countercurrent chromatography
lipid analysis
polyhalogenated compounds
halogenated natural products
halogenated flame retardants
stable isotope mass spectrometry (IRMS)
countercurrent chromatography
lipid analysis
methyl-branched fatty acids
furan fatty acids
unsaponifiable matter
enantiomer separations
standard compounds
GC/MS
food authenticity
Gas chromatograms of fatty acids (as methyl esters) in food samples

Sesame Oil
- 16:0
- 18:0
- 18:1n-9
- 18:2n-6
- 18:3n-3

Fish Oil
- 14:0
- 16:0
- 16:1n-7
- 18:0
- 18:1n-9
- 18:2n-6
- 18:4n-3
- 20:3n-9
- 20:4n-6
- EPA
- DHA

Linseed Oil
- 16:0
- 18:0
- 18:1n-9
- 18:2n-6
- 18:3n-3

Milk Fat
- 10:0
- 12:0
- 14:0
- 15:0
- 16:0
- 16:1n-7
- 18:0
- 18:1n-9
- a15:0
- a17:0
anteiso-fatty acids acids

- methyl substituent at \((n-2)\) carbon \(\Rightarrow\) anteiso-fatty acid

- typical chain length: \(C_{14}\) and \(C_{16}\), odd carbon number (due to methyl group)
- usually found in ruminants and fish (barely in plants)
- usually occurring together with iso-fatty acids (methyl-branch on second last carbon)

12-methyl tetradecanoic acid (a15:0)

13-methyl tetradecanoic acid (i15:0)
Bacterial lipids

- anteiso- and iso-fatty acids dominate (in gram-positive bacteria)
 \[\Rightarrow \text{up to } 80\% \text{ contribution to the total fatty acids} \]

- occurrence of anteiso-fatty acids in food is mostly linked with the presence of bacteria
 \[\Rightarrow \text{in gnotobiologic (germ-free) rats only present at traces} \ [1] \]

Stable isotope analysis: GC-IRMS method

• eluate from the GC column led to combustion unit
• organic carbon is transferred into CO₂
• exact determination of the 13C/12C ratio is difficult
 ⇒ instead, measurement relative to reference standard

$$\delta^{13}C \ [\%o] = \frac{\left[^{13}C/^{12}C\right]_{sample} - \left[^{13}C/^{12}C\right]_{standard}}{\left[^{13}C/^{12}C\right]_{standard}} \times 1000$$

• typical $\delta^{13}C$ values in the range -10 to -40‰

δ^{13}C values [%] of fatty acids in suet

<table>
<thead>
<tr>
<th>fatty acid*</th>
<th>δ^{13}C value [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:0</td>
<td>-26.6</td>
</tr>
<tr>
<td>14:0</td>
<td>-27.2</td>
</tr>
<tr>
<td>i15:0</td>
<td>-36.7</td>
</tr>
<tr>
<td>a15:0</td>
<td>-35.9</td>
</tr>
<tr>
<td>15:0</td>
<td>-30.5</td>
</tr>
<tr>
<td>i16:0</td>
<td>-37.6</td>
</tr>
<tr>
<td>16:0</td>
<td>-27.1</td>
</tr>
<tr>
<td>i17:0</td>
<td>-36.2</td>
</tr>
<tr>
<td>a17:0</td>
<td>-35.5</td>
</tr>
</tbody>
</table>

* measured as methyl ester

δ^{13}C values verify:

- methyl-branched fatty acids are depleted in 13C compared to straight-chain fatty acids ⇒ different sources!

Properties of methyl-branched fatty acids

- inertness towards oxidation
- low melting point
- changing physiological properties of lipids
 ⇒ increase of the membrane fluidity
- positive effect on the penetration of other compounds into the skin

1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC)

Differential scanning calorimetry (DSC): DSC thermograms of lipids

A thought during a student lecture

- Amino acids – building blocks of proteins – are chiral (typically L-form)

- Sugars – building blocks of carbohydrates – are chiral (typically D-form)

- Fatty acids – building blocks of lipids – are non-chiral

⇒ one notable exception: anteiso-fatty acids
Chirality of \textit{anteiso}-fatty acids

- 1950ies: one-time investigation of suet and shark liver oils \cite{1,2}
 \[\Rightarrow \sim 10 \text{ kg fat/oil converted into methyl esters} \]
 \[\Rightarrow \text{fractionation via distillation} \]
 \[\Rightarrow \text{repeated crystallization} \]
 \[\Rightarrow \text{x-ray analysis, optical rotation} \]

\textbf{result:}
- all samples exclusively featured the (+)-enantiomer

Ref.: \cite{1} R. P. Hansen, F. B. Shorland, N. J. Cooke, \textit{Biochem. J.} 52 (1952) 203-207
\cite{2} I. M. Morice, F. B. Shorland, \textit{Biochem. J.} 64 (1956) 461-464
GC enantiomer separation of anteiso-fatty acids

- not reported when we started
- only of α-, β- and γ-methyl-substituted acids resolved [1][2]
- the more remote the methyl group from the head group, the more difficult the enantiomer separation is [1][2]

Small problems had to be solved...

- **synthesis of enantiopure standards** [1]
 - Wittig reaction (olefination of chiral aldehydes via ylides)
 - hydrogenation of the resulting double bond

- **searching for a chiral stationary GC phase** [2]
 - testing of ~20 chiral stationary phases
 - improvement of the only promising one

- **development of sensitive and selective method** [3]
 - development of a GC/MS-SIM method
 - enrichment/isolation of anteiso-fatty acids by hydrogenation, urea complexation and/or (Ag⁺) HPLC fractionation

Fatty acid analysis

• important routine task in food science (and life sciences)
• classic method using GC/FID after formation of fatty acid methyl esters (FAME)

⇒ peak abundance correlates with amount
⇒ determination of relative contributions (“100% method“)

disadvantages of GC/ FID

• low selectivity
• co-elutions may be overlooked
• problems with low abundant fatty acids

GC: gas chromatography
FID: flame ionisation detector
Coelution of monoenoic and *anteiso*-fatty acids

- 17:0-ME: $M^+ = m/z$ 284
- 16:1-ME: $M^+ = m/z$ 268

- co-elutions can hardly be omitted on 50 m columns

GC/MS chromatogram of a milk fat sample

(GC column: 50 m x 0.25 mm i.d. x 0.2 µm 100% cyanopropyl polysiloxane)
Why GC/MS in SIM mode?

(Selected ion monitoring (SIM))

- more sensitive and selective than full scan

m/z 284 extracted from full scan

m/z 284 measured in SIM mode

GC column: 50 m x 0.25 mm i.d. x 0.2 µm 100% cyanopropyl polysiloxane
Determination of fatty acid methyl esters by GC/MS-SIM

- sensitivity and selectivity

Quantitative determination of individual fatty acids

- quantification requires use of internal standards (IS) not present in the sample

(1) IS for sample cleanup
(addition before/after the extraction)

DC-11:0

(2) syringe standard
(addition to GC/MS solution)

14:0-EE

House method

lipid extraction using accelerated solvent extraction (ASE) for dry samples or microwave-assisted extraction (MAE) of aqueous samples

gc/ms-sim analysis

Microwave-assisted extraction (focused-open vessel; FOV-MAE)

- connection tool with water trap and nitrogen inlet

No commercial system, self-constructed, base instrument for acid digestions
Concentrations [g/ 100 g fat] of methyl-branched fatty acids in food

<table>
<thead>
<tr>
<th>FAME</th>
<th>mozzarella (cow) [g/ 100 g]</th>
<th>feta (cow) [g/ 100 g]</th>
<th>feta cheese [g/ 100 g]</th>
<th>human milk [g/ 100 g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>i14:0</td>
<td>0.08 ± 0.00</td>
<td>0.08 ± 0.00</td>
<td>0.08 ± 0.00</td>
<td>0.02 ± 0.00</td>
</tr>
<tr>
<td>i15:0</td>
<td>0.20 ± 0.01</td>
<td>0.29 ± 0.01</td>
<td>0.21 ± 0.01</td>
<td>0.06 ± 0.00</td>
</tr>
<tr>
<td>a15:0</td>
<td>0.30 ± 0.01</td>
<td>0.38 ± 0.01</td>
<td>0.34 ± 0.03</td>
<td>0.08 ± 0.00</td>
</tr>
<tr>
<td>i16:0</td>
<td>0.12 ± 0.00</td>
<td>0.09 ± 0.01</td>
<td>0.07 ± 0.01</td>
<td>0.03 ± 0.00</td>
</tr>
<tr>
<td>i17:0</td>
<td>0.47 ± 0.01</td>
<td>0.56 ± 0.02</td>
<td>0.37 ± 0.02</td>
<td>0.11 ± 0.02</td>
</tr>
<tr>
<td>a17:0</td>
<td>0.39 ± 0.01</td>
<td>0.42 ± 0.02</td>
<td>0.37 ± 0.01</td>
<td>0.14 ± 0.00</td>
</tr>
</tbody>
</table>

- only these fatty acids were quantified using the corresponding ethyl esters as IS

Birth goo (Vernix caseosa)

- detection of ~60 methyl-branched fatty acids (although germ-free)

Direct GC enantiomer separation of anteiso-fatty acids

- application of modified cyclodextrins

\[\alpha\text{-cyclodextrin} \quad \beta\text{-cyclodextrin} \quad \gamma\text{-cyclodextrin} \]
(6 glucose units) (7 glucose units) (8 glucose units)

- \(O\)-derivatisation at C-2, C-3 and C-6 provides a range of modified cyclodextrins suitable as chiral stationary GC phases
6-\textit{O-}\textit{ tert.}-butyldimethylsilyl-2,3-di-\textit{O-}methyl-\(\beta\)-cyclodextrin (\(\beta\)-TBDM)

- tests of >20 chiral stationary phases only partly successful with \(\beta\)-TBDM
 - \(\Rightarrow\) improvement of the initial phase
 (collaboration with G. Hottinger, BGB-Analytik)

10\% \(\beta\)-TBDM thin film
- lowers elution temperature
- resolution decreases

50\% \(\beta\)-TBDM standard film
- better interaction
- better resolution

\(\beta\)-TBDM:
\(R_1 = R_2 =\) methyl

Enantioselective determination of a17:0 on β-TBDM

racemates partly resolved

racemates spiked with S-enantiomer
elution order: $R < S$

pure S-enantiomer
\Rightarrow required GC run time
8–10 h elution time

Sample preparing for enantiomer separation:
(1) urea complexation
(2) silver ion chromatography

urea complexation => separation of major saturated fatty acids

Ag⁺-HPLC => separation of unsaturated fatty acids

Results: Chirality of anteiso-fatty acids

- Yet, up to 10% R-anteiso-fatty acids detected in milk fat and fish
- R-anteiso-fatty acids cannot be synthesized by the classical biosynthesis via isoleucine as the primer
 \Rightarrow A hitherto mostly unknown biosynthesis pathway must exist
Results: Chirality of anteiso-fatty acids

- Yet, up to 10% R-anteiso-fatty acids were detected in milk fat and fish.
- R-anteiso-fatty acids cannot be synthesized by the classical biosynthesis via isoleucine as the primer.

4-alkyl: R-enantiomers
anteiso: S-enantiomers

Surprisingly, 4-alkylbranched fatty acids (principal flavor compounds of goat and sheep (4-Me-8:0 and 4-Et-8:0) were recently shown to be R-enantiopure.

Enantiopure 4-alkylbranched standards were produced via repeated enantioselective esterification.
Two dimensional HPLC/ GC chromatogram of fish oil fatty acids (as methyl esters)

- excel-programmed 2D evaluation

- similar approach as GCxGC

disadvantage
- time consuming
 (~2 days per sample)

advantage
- good orthogonality
- higher amounts (post analysis possible)

HPLC/ GC - 2D Konturplot

PUFAs in the HPLC/GC plot of a fish oil

- many, many PUFAs

- non-aqueous RP-HPLC with three C₁₈ columns

HPLC/ GC plots of branched chain fatty acids

- HPLC fractionation allowed to detect traces of a16:0
- most likely produced by α-oxidation of a17:0
Valuable minor fatty acids in milk

<table>
<thead>
<tr>
<th>parameter</th>
<th>organic milk*</th>
</tr>
</thead>
<tbody>
<tr>
<td>phytanic acid</td>
<td>+</td>
</tr>
<tr>
<td>PUFA (ALA, EPA)</td>
<td>+</td>
</tr>
<tr>
<td>CLA</td>
<td>+</td>
</tr>
<tr>
<td>furan fatty acids</td>
<td>+</td>
</tr>
</tbody>
</table>

“+” higher content in organic milk than in conventional milk due to green feed
Features of furan fatty acids

- structural feature: furan moiety in the carbon chain
- substituted with one ("M") or two ("D") methyl groups

- short terms: 9M5 9D5

- "D"-furan fatty acids are more widespread but much less stable
 ⇒ partly absent in processed or stored samples
- excellent antioxidants (very effective protectors of PUFAs)
- degradation products responsible for off flavor of soy (among other)

Calculated daily intake of furan fatty acids per capita [mg], in Germany

Calculated daily intake of furan fatty acids per capita [mg], in Germany

- yesterday, John Bowden of NIST presented data from >20 labs on lipidomics (fish, krill oil)
- SRM 1950 (human plasma), krill oil, fish
- some 1500 lipids reported
- on my question, he confirmed that none of the labs had detected furan fatty acids

Furan fatty acids

- minor fatty acids, low concentrations (typically <0.1% contribution to the total fatty acids)
- but: widely spread in virtually all plants and animals

- discovered, studied in the 1970s (R.L. Glass, H. Schlenk, F.D. Gunstone)
- mostly forgotten, studied again ~1985-1995 (G. Spiteller, W. Grosch)
- almost forgotten since the 2000s
- no reference standards commercially available
 ⇒ research only possible with house-prepared standards
Compound isolation using countercurrent chromatography (CCC)

- CCC is a well-established method in natural product isolation [1][2]
- all liquid based chromatographic method (no solid support) [3]
- allows injection and isolation of gram-amounts of analytes [3]
- barely used in field of lipid compounds [1]

Applications of countercurrent chromatography (CCC) according to SciFinder (1981-2015)

- currently >300 CCC papers/year, number is increasing
- ~3% in the field of lipid compounds
CCC instrumentation

- CCC systems same setup as HPLC instruments except the column
 ⇒ instead: CCC centrifuge with multilayer coils

Diagram:
- Stationary phase
- Mobile phase
- Pump
- Injection valve
- CCC centrifuge with multilayer bobbins
- Detector
- Fraction collector
CCC method development

- CCC is different to liquid-liquid extractions as it aims to distribute the analyte evenly between both phases

- determination of the partitioning factor

\[K_{U/L} = \frac{\text{[concentration in upper phase]}}{\text{[concentration in lower phase]}} \approx 0.4 - 2.5 \]

- even distribution: \(K_{U/L} = 1 \); acceptable range: \(K_{U/L} = 0.4 - 2.5 \)

⇒ the goal challenge is to find a biphasic solvent system in which the analytes are ~ evenly distributed (and resolved)

⇒ see tutorial on CCC in the AOCS Lipid Library
Isolation of the valuable furan fatty acid 11D5

11-(3,4-dimethyl-5-pentylfuran-2-yl)-undecanoic acid (11D5)

- excellent antioxidant
- no standards available
- limited research

Injection: 1 g

Yield: 19 mg 11D5

Purity: 99%

Solvent consumption: 100 mL

Time per mg 11D5: 3.4 min

CCC isolation of fatty acid methyl esters

hexane/methanol/water (350/175/2) for fatty acid methyl esters (FAME)

- **equivalent chain length (ECL) rule:**
 \[\Rightarrow 2 \text{ carbons} \sim 1 \text{ DB} \]

- no problem with 16:4 (ECL: 12:2 / 10:1 / 8:0)

Sample fractionation and analyte isolation via countercurrent chromatography (CCC)

1. isolation of lipid compounds for use as standards/in biotests
 • examples: - isolation of uncommon fatty acids
 - isolation of phytosterols, tocopherols, carotenes etc.

2. fractionation of lipids or lipid fractions by CCC
 • detection of minor compounds usually “invisible“ without fractionation
 • examples: - detection of 430 fatty acids in one butter sample
 - discovery of aromatic fatty acids in milk fat
Detailed analysis of a butter sample

- 21 g butter
 - 16.9 g butter oil
 - 17.1 g FAME
 - 4.7 g residue
 - 0.2 g filtrate

- CCC #1 from FAME fraction (major fatty acids)
- CCC #2 from filtrate of urea complexation (rare trace fatty acids)
- 430 different fatty acids
- >100 PUFAs
- several rare fatty acids

Detailed analysis of a butter sample

• potential formation from oleic acid (lipid oxidation)

Aromatic fatty acids in butter

- previously not known to occur in milk (and other food)
- potential formation from phenylalanine as the primer

Cyclic fatty acids

- previously known to occur in milk
- potential formation with aromatic fatty acids by hydrogenation?

Very nonpolar lipid compounds

- log K_{ow} 7 -20
- main interest in this study: log K_{ow} >15

- except sitosterol no polar groups (-OH)

- sitosterol

- tricaprylin

- tripalmitin (PPP)

- cholesteryl stearate (18:0-CE)

- huge difference between triacylglycerols

- log K_{ow}~14.6
- log K_{ow}~10
- log K_{ow}~15
- log K_{ow}~21
- log K_{ow}~9.7

- log K_{ow} 7 -20
- main interest in this study: log K_{ow} >15
Introduction of benzotrifluoride as modifier in solvent systems

- bridging solvents between the biphasic system [1]

ternary phase diagram

- well suited composition and properties:
 - Hex/ACN/BTF: 10 / 6.5 / 3.5
 - settling time: < 20 sec

Isolation of carotenoids from carrot juice using hexane / acetonitrile / benzotrifluoride (BTF)

\[\text{β-carotene} \]
\[\text{α-carotene} \]
\[\text{lutein} \]

- **β-carotene**: Purity ≥95%
- **α-carotene**: Purity ≥95%
- **Lutein**: Purity ≥97%

CCC/vis-chromatogram
- **β-carotene**
- **α-carotene**
- **Lutein**

HPLC/UV chromatograms (450 nm)
- **β-carotene**: 51 mg, purity ≥95%
- **α-carotene**: 32 mg, purity ≥95%
- **Lutein**: 4 mg, purity ≥97%

Difference between “Hex / ACN“ and the “Hex / ACN / BTF“ solvent system

Phase composition of solvent systems determined by GC/ FID [1]

<table>
<thead>
<tr>
<th>solvent system</th>
<th>lower</th>
<th>upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>hexane / ACN [1]</td>
<td>1.2 / 98.8</td>
<td>99.5 / 0.5</td>
</tr>
<tr>
<td>hexane / ACN / BTF [2]</td>
<td>29.0 / 56.7 / 14.3</td>
<td>76.0 / 12.5 / 11.6</td>
</tr>
</tbody>
</table>

- >1/4th hexane partitions into lower phase
- difference in polarity decreased

Ref.:
K\textsubscript{U/L} of lipid compounds in the BTF system

(Hex/ACN/BTF, 10:6.5:3.5)

<table>
<thead>
<tr>
<th>lipid compound</th>
<th>log K_{OW}</th>
<th>HEMWAT -7 $K_{\text{U/L}}$</th>
<th>BTF $K_{\text{U/L}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>oleic acid</td>
<td>7.7</td>
<td>29</td>
<td>0.57</td>
</tr>
<tr>
<td>oleic acid methyl ester</td>
<td>7.5</td>
<td>41</td>
<td>2.4</td>
</tr>
<tr>
<td>sitosterol</td>
<td>9.7</td>
<td>16</td>
<td>2.2</td>
</tr>
<tr>
<td>squalane</td>
<td>14.6</td>
<td>550</td>
<td>62</td>
</tr>
<tr>
<td>cholesteryl stearate</td>
<td>15</td>
<td>1260</td>
<td>80</td>
</tr>
<tr>
<td>tripalmitin (PPP)</td>
<td>21</td>
<td>1490</td>
<td>60</td>
</tr>
</tbody>
</table>

Excellent for FAMEs, sterols, tocopherols

BTF system in co-current* CCC mode

* introduced by Sutherland et al., theory by Berthod et al.

- both phases are moved
- accelerates elution of analytes with high $K_{U/L}$
- exponential increase leads to co-elution of analytes with high $K_{U/L}$, even if $\Delta K_{U/L}$ is high

Co-current CCC mode with the BTF system

- elution of lipid compounds spreading from log \(K_{ow} \) 3 – 30 within acceptable run time
- no separation of extremely nonpolar lipid compounds

![Diagram showing elution range of triacylglycerols, standard mix, and elution of lipid compounds spreading from log \(K_{ow} \) 3 – 30 within acceptable run time.](image)
Co-current CCC mode with the BTF system

bubble blot of the co-current CCC separation of 0.5 g rice bran oil

CCC isolation of vitamin E compounds

- dietary supplementary capsule made from palm oil
 - each isolated at 10-65 mg/run (purity 99%)

Tocotrienol artefacts

- 170 non-natural vitamin E compounds in a palm-oil based dietary supplementary oil
- ~80 tocotrienol isomers
- tocotetra- & pentaenols
- ...
- formed during inadequate sample processing

Summary

- analysis of minor lipid compounds is a fascination and varied research field
- the actual relevance of minor fatty acids may currently be underrated
- unavailability of standards frequently hampers progress in the field
 (no standard = no research = no knowledge)
- lipid standards can be isolated by countercurrent chromatography
- our work is a mixture of basic research and applications
- and sometimes …
 … it’s like a road movie (the journey is the goal)
Thousand thanks!

• to my former and previous ph. d. students, master and bachelor students, especially those pictured in this presentation (people first)!

• to our research partners here, there and everywhere!

• to our funders (without money, no research)!

• to Analytical Division of AOCS for honoring our research with the Herbert J. Dutton Award

• to Dr. Perluigi Delmonte, US FDA, for inviting me to the AOCS meeting in Minneapolis

• to YOU for your attention