# Cropping location and year effect protein content and amino acid score of different lentil varieties

Matthew G. Nosworthy, <sup>1</sup> Jason Neufeld, <sup>1</sup> Tom Warkentin<sup>2</sup> and James D. House <sup>1</sup>
<sup>1</sup>Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
<sup>2</sup>Crop Development Centre/Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada

#### Lentils

- Edible pulse crop
  - Cultivated in over 48 countries
- Largest exporter Canada (1.8 MT in 2013)
  - 95% produced in Saskatchewan
- Largest importer India (0.7 MT in 2013)
- Average protein content of 28%
  - Range between 16-31%
- Rich in lysine, limiting in sulfur amino acids/tryptophan
- Multiple varieties, growing locations



#### Location

| Desi Chickpea      | Protein (g/kg<br>seed meal) |
|--------------------|-----------------------------|
| Brooks 2005        | 217.8                       |
| Bow Island 2005    | 184                         |
| Goodale 2005       | 176.9                       |
| Davidson 2005      | 154.7                       |
| Kyle 2004          | 190                         |
| Kyle 2005          | 197.4                       |
| Swift Current 2005 | 212.7                       |
| Elrose 2005        | 155.5                       |
| Scott 2004         | 245.6                       |
| Scott 2005         | 216.5                       |

| Kabuli Chickpea    | Protein (g/kg seed meal) |
|--------------------|--------------------------|
| Bow Island 2005    | 192.3                    |
| Elrose 2005        | 172                      |
| Kyle 2005          | 194.2                    |
| Davidson 2005      | 158.4                    |
| Goodale 2005       | 198.2                    |
| Swift Current 2005 | 209.7                    |
| Hodgeville 2005    | 180.3                    |

#### Genetics

| Desi Chickpea | Protein (g/kg<br>seed meal) |
|---------------|-----------------------------|
| ICC - 12512-9 | 191                         |
| ICC-12512-1   | 192                         |
| CDC Vanguard  | 185                         |
| CDC Cabri     | 196                         |
| 316B-42       | 201                         |
| CDC Anna      | 188                         |
| Myles         | 212                         |
|               | Duntain / - /lin            |

| Protein (g/kg<br>Kabuli Chickpea seed meal) |     |
|---------------------------------------------|-----|
| CDC Frontier                                | 188 |
| FLIP97-133C                                 | 171 |
| Amit                                        | 192 |
| FLIP97-45C                                  | 190 |
| FLIP98-135C                                 | 186 |
| FLIP98-134C                                 | 184 |
| 97-Indian2-1                                | 187 |
| CDC Xena                                    | 182 |
| Sanford                                     | 198 |

|            | Protein (g/kg |     |
|------------|---------------|-----|
| Faba Bean  | DM)           |     |
| CDC Fatima |               | 307 |
| Disco      |               | 285 |
| Dixie      |               | 297 |
| Florent    |               | 282 |
| Gloria     |               | 324 |
| Imposa     |               | 275 |
| NPZ4-7460  |               | 283 |
| NPZ4-7540  |               | 297 |
| NPZ5-7530  |               | 287 |
| Snowbird   |               | 284 |
| SSNS-1     |               | 302 |

| Pea         | Protein (g/kg<br>DM) |
|-------------|----------------------|
| Bluebird    | 250                  |
| CanStar     | 242                  |
| CDC Striker | 275                  |
| CDC Tucker  | 271                  |
| Cooper      | 255                  |
| Cutlass     | 250                  |
| Fusion      | 244                  |
| Reward      | 255                  |
| SW Marquee  | 253                  |
| Tamora      | 253                  |

Chickpea data: Frimpong, et al. *J. Sci Food Agric* 2009; **89**: 2052–2063

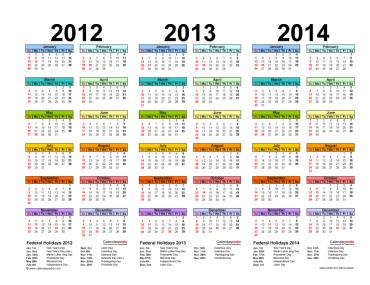
Pea and faba bean data: Hood-Niefer et al, J Sci Food Agric 2012; 92: 141–150

# Protein Digestibility-Corrected Amino Acid Score (PDCAAS)<sup>1</sup>

- Proposed by FAO/WHO in 1991
  - Adopted by USA in 1993
- Amino Acid Score (AAS)
  - AA in food/AA in reference pattern
    - o mg/g protein
    - Reference pattern of 2-5 yr old school children (1991)
- True Fecal Protein Digestibility (TFPD)
  - Fecal N output/Dietary N input
    - Corrected for endogenous losses
- Additive
  - Can use existing PDCAAS data to predict new values

| Reference Values (mg/g protein) |        |
|---------------------------------|--------|
|                                 | PDCAAS |
|                                 | (1991) |
| THR                             | 34     |
| VAL                             | 35     |
| MET+CYS                         | 25     |
| ILE                             | 28     |
| LEU                             | 66     |
| PHE+TYR                         | 63     |
| HIS                             | 19     |
| LYS                             | 58     |
| TRP                             | 11     |
|                                 |        |

#### **Protein Quality**


- Protein digestibility-corrected amino acid score (PDCAAS)<sup>1</sup>
  - Amino Acid Score (AAS)
  - Protein Digestibility
- AAS
  - Ratio between amino acid composition of the protein to a reference pattern based on human nutritional requirements
  - AAS ≥ 1 : Not limiting
  - AAS  $\leq 1$ : Limiting
  - Lowest AAS first limiting amino acid

## Objective

What is the effect of:

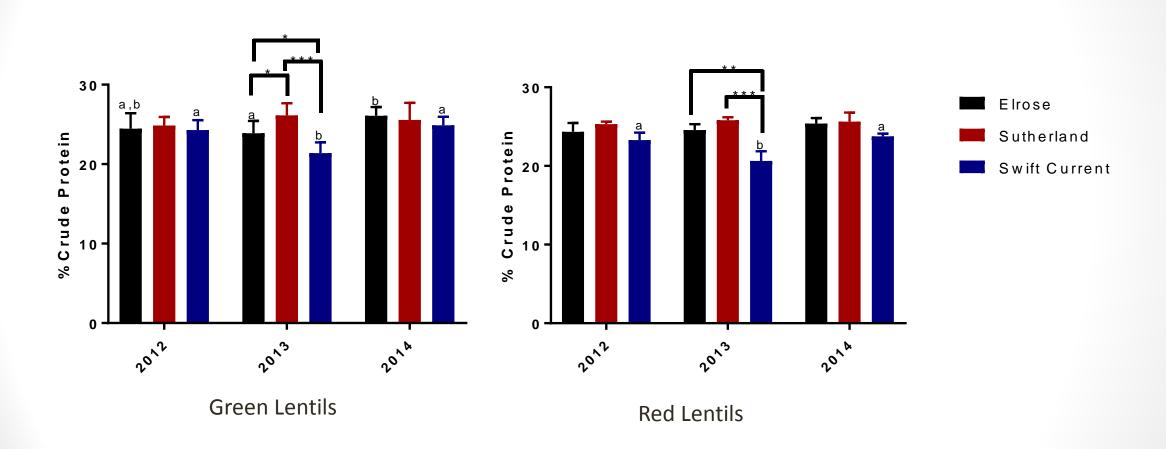
- 1) Cropping Year
- 2) Cropping Location

On protein content and amino acid composition of different varietals of red and green lentils.

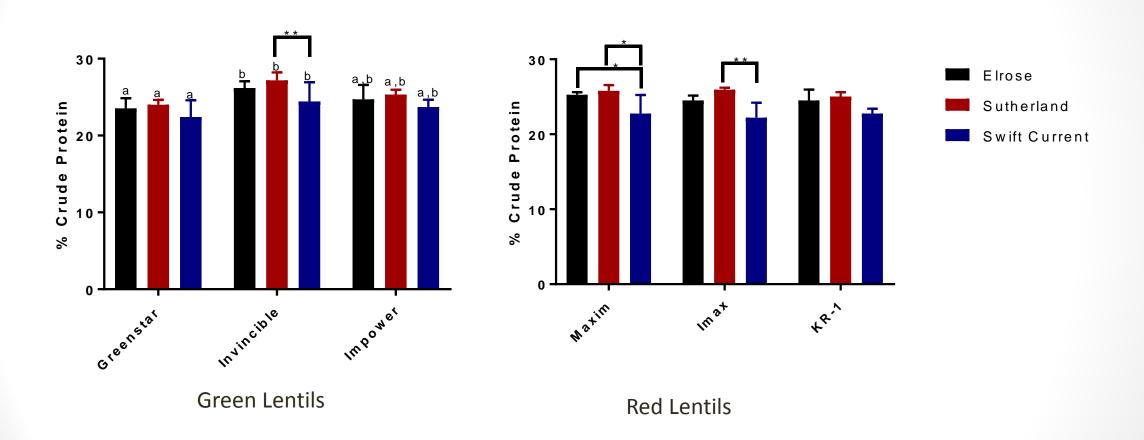




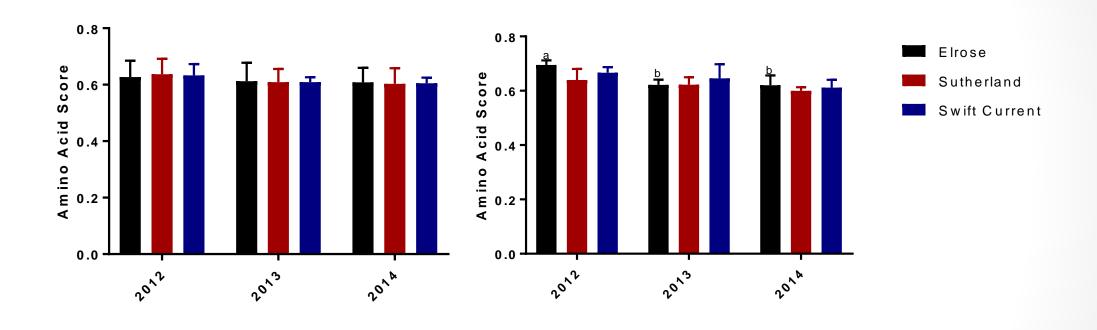
## Sample Procurement


- Cropping locations:
  - Elrose
  - Sutherland
  - Swift Current
- Red Lentil
  - Maxim
  - Imax
  - KR-1
- Green Lentil
  - Greenstar
  - Invincible
  - Impower
- Collected in 2012, 2013, 2014




#### Sample analysis

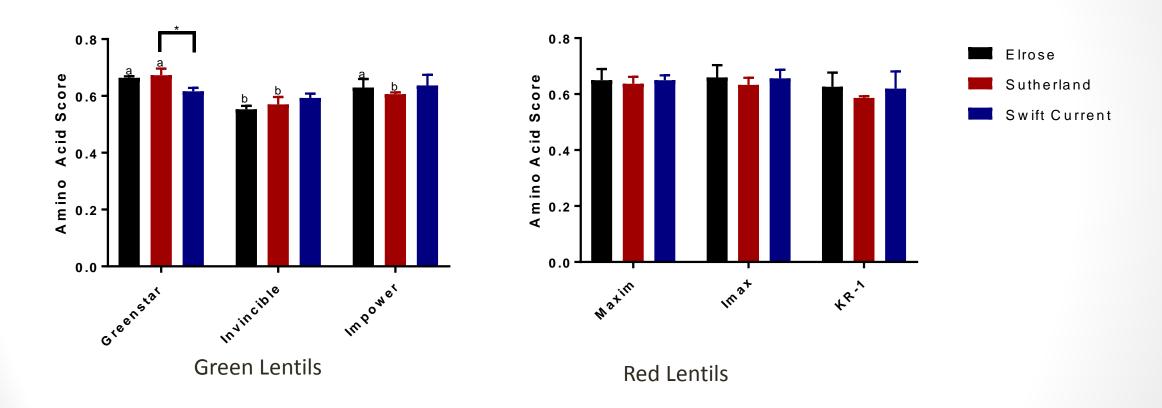
- Nitrogen
  - Dumas Combustion, conversion to protein using N x 6.25
- Amino acid composition
  - Acid hydrolysis<sup>2</sup>
  - Sulfur amino acids were determined by performic acid oxidized hydrolysis<sup>2</sup>
    - Both acid hydrolysis and SAA were quantified via UPLC (AccQ Tag Ultra)
  - Tryptophan isolated via alkaline hydrolysis and quantified using HPLC<sup>3</sup>


#### Annual Crude Protein Content



#### Varietal Crude Protein Content




#### Annual Amino Acid Score



**Green Lentils** 

**Red Lentils** 

#### Varietal Amino Acid Score



## Summary

#### Protein Content

- Change based on year and location for both red and green lentils
- differs between varietals (Greenstar < Invincible)</li>
- Selection of varietal and location could be used to optimize protein content

#### Amino Acid Score

- Little annual variation (higher AAS in Elrose 2012 than 2013/2014)
- Greater variability in green lentils than in red lentils

#### **Future Directions**

- Further comparisons
  - Fat content
- Calculation of in vitro PDCAAS
  - Requires determination of protein digestibility
  - Good relationship between in vitro and in vivo PDCAAS
- Investigation of agronomic conditions during 2012-2014
- Analysis of other pulse crops
  - Beans, peas, chickpeas



## Growing Forward 2

A federal-provincial-territorial initiative



